Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for tensorflow_model.object_detection.metrics.coco_tools.""" | |
import json | |
import os | |
import re | |
import numpy as np | |
from pycocotools import mask | |
import tensorflow.compat.v1 as tf | |
from object_detection.metrics import coco_tools | |
class CocoToolsTest(tf.test.TestCase): | |
def setUp(self): | |
groundtruth_annotations_list = [ | |
{ | |
'id': 1, | |
'image_id': 'first', | |
'category_id': 1, | |
'bbox': [100., 100., 100., 100.], | |
'area': 100.**2, | |
'iscrowd': 0 | |
}, | |
{ | |
'id': 2, | |
'image_id': 'second', | |
'category_id': 1, | |
'bbox': [50., 50., 50., 50.], | |
'area': 50.**2, | |
'iscrowd': 0 | |
}, | |
] | |
image_list = [{'id': 'first'}, {'id': 'second'}] | |
category_list = [{'id': 0, 'name': 'person'}, | |
{'id': 1, 'name': 'cat'}, | |
{'id': 2, 'name': 'dog'}] | |
self._groundtruth_dict = { | |
'annotations': groundtruth_annotations_list, | |
'images': image_list, | |
'categories': category_list | |
} | |
self._detections_list = [ | |
{ | |
'image_id': 'first', | |
'category_id': 1, | |
'bbox': [100., 100., 100., 100.], | |
'score': .8 | |
}, | |
{ | |
'image_id': 'second', | |
'category_id': 1, | |
'bbox': [50., 50., 50., 50.], | |
'score': .7 | |
}, | |
] | |
def testCocoWrappers(self): | |
groundtruth = coco_tools.COCOWrapper(self._groundtruth_dict) | |
detections = groundtruth.LoadAnnotations(self._detections_list) | |
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections) | |
summary_metrics, _ = evaluator.ComputeMetrics() | |
self.assertAlmostEqual(1.0, summary_metrics['Precision/mAP']) | |
def testExportGroundtruthToCOCO(self): | |
image_ids = ['first', 'second'] | |
groundtruth_boxes = [np.array([[100, 100, 200, 200]], np.float), | |
np.array([[50, 50, 100, 100]], np.float)] | |
groundtruth_classes = [np.array([1], np.int32), np.array([1], np.int32)] | |
categories = [{'id': 0, 'name': 'person'}, | |
{'id': 1, 'name': 'cat'}, | |
{'id': 2, 'name': 'dog'}] | |
output_path = os.path.join(tf.test.get_temp_dir(), 'groundtruth.json') | |
result = coco_tools.ExportGroundtruthToCOCO( | |
image_ids, | |
groundtruth_boxes, | |
groundtruth_classes, | |
categories, | |
output_path=output_path) | |
self.assertDictEqual(result, self._groundtruth_dict) | |
with tf.gfile.GFile(output_path, 'r') as f: | |
written_result = f.read() | |
# The json output should have floats written to 4 digits of precision. | |
matcher = re.compile(r'"bbox":\s+\[\n\s+\d+.\d\d\d\d,', re.MULTILINE) | |
self.assertTrue(matcher.findall(written_result)) | |
written_result = json.loads(written_result) | |
self.assertAlmostEqual(result, written_result) | |
def testExportDetectionsToCOCO(self): | |
image_ids = ['first', 'second'] | |
detections_boxes = [np.array([[100, 100, 200, 200]], np.float), | |
np.array([[50, 50, 100, 100]], np.float)] | |
detections_scores = [np.array([.8], np.float), np.array([.7], np.float)] | |
detections_classes = [np.array([1], np.int32), np.array([1], np.int32)] | |
categories = [{'id': 0, 'name': 'person'}, | |
{'id': 1, 'name': 'cat'}, | |
{'id': 2, 'name': 'dog'}] | |
output_path = os.path.join(tf.test.get_temp_dir(), 'detections.json') | |
result = coco_tools.ExportDetectionsToCOCO( | |
image_ids, | |
detections_boxes, | |
detections_scores, | |
detections_classes, | |
categories, | |
output_path=output_path) | |
self.assertListEqual(result, self._detections_list) | |
with tf.gfile.GFile(output_path, 'r') as f: | |
written_result = f.read() | |
# The json output should have floats written to 4 digits of precision. | |
matcher = re.compile(r'"bbox":\s+\[\n\s+\d+.\d\d\d\d,', re.MULTILINE) | |
self.assertTrue(matcher.findall(written_result)) | |
written_result = json.loads(written_result) | |
self.assertAlmostEqual(result, written_result) | |
def testExportSegmentsToCOCO(self): | |
image_ids = ['first', 'second'] | |
detection_masks = [np.array( | |
[[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]], | |
dtype=np.uint8), np.array( | |
[[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]], | |
dtype=np.uint8)] | |
for i, detection_mask in enumerate(detection_masks): | |
detection_masks[i] = detection_mask[:, :, :, None] | |
detection_scores = [np.array([.8], np.float), np.array([.7], np.float)] | |
detection_classes = [np.array([1], np.int32), np.array([1], np.int32)] | |
categories = [{'id': 0, 'name': 'person'}, | |
{'id': 1, 'name': 'cat'}, | |
{'id': 2, 'name': 'dog'}] | |
output_path = os.path.join(tf.test.get_temp_dir(), 'segments.json') | |
result = coco_tools.ExportSegmentsToCOCO( | |
image_ids, | |
detection_masks, | |
detection_scores, | |
detection_classes, | |
categories, | |
output_path=output_path) | |
with tf.gfile.GFile(output_path, 'r') as f: | |
written_result = f.read() | |
written_result = json.loads(written_result) | |
mask_load = mask.decode([written_result[0]['segmentation']]) | |
self.assertTrue(np.allclose(mask_load, detection_masks[0])) | |
self.assertAlmostEqual(result, written_result) | |
def testExportKeypointsToCOCO(self): | |
image_ids = ['first', 'second'] | |
detection_keypoints = [ | |
np.array( | |
[[[100, 200], [300, 400], [500, 600]], | |
[[50, 150], [250, 350], [450, 550]]], dtype=np.int32), | |
np.array( | |
[[[110, 210], [310, 410], [510, 610]], | |
[[60, 160], [260, 360], [460, 560]]], dtype=np.int32)] | |
detection_scores = [np.array([.8, 0.2], np.float), | |
np.array([.7, 0.3], np.float)] | |
detection_classes = [np.array([1, 1], np.int32), np.array([1, 1], np.int32)] | |
categories = [{'id': 1, 'name': 'person', 'num_keypoints': 3}, | |
{'id': 2, 'name': 'cat'}, | |
{'id': 3, 'name': 'dog'}] | |
output_path = os.path.join(tf.test.get_temp_dir(), 'keypoints.json') | |
result = coco_tools.ExportKeypointsToCOCO( | |
image_ids, | |
detection_keypoints, | |
detection_scores, | |
detection_classes, | |
categories, | |
output_path=output_path) | |
with tf.gfile.GFile(output_path, 'r') as f: | |
written_result = f.read() | |
written_result = json.loads(written_result) | |
self.assertAlmostEqual(result, written_result) | |
def testSingleImageDetectionBoxesExport(self): | |
boxes = np.array([[0, 0, 1, 1], | |
[0, 0, .5, .5], | |
[.5, .5, 1, 1]], dtype=np.float32) | |
classes = np.array([1, 2, 3], dtype=np.int32) | |
scores = np.array([0.8, 0.2, 0.7], dtype=np.float32) | |
coco_boxes = np.array([[0, 0, 1, 1], | |
[0, 0, .5, .5], | |
[.5, .5, .5, .5]], dtype=np.float32) | |
coco_annotations = coco_tools.ExportSingleImageDetectionBoxesToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
detection_boxes=boxes, | |
detection_classes=classes, | |
detection_scores=scores) | |
for i, annotation in enumerate(coco_annotations): | |
self.assertEqual(annotation['image_id'], 'first_image') | |
self.assertEqual(annotation['category_id'], classes[i]) | |
self.assertAlmostEqual(annotation['score'], scores[i]) | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
def testSingleImageDetectionMaskExport(self): | |
masks = np.array( | |
[[[1, 1,], [1, 1]], | |
[[0, 0], [0, 1]], | |
[[0, 0], [0, 0]]], dtype=np.uint8) | |
classes = np.array([1, 2, 3], dtype=np.int32) | |
scores = np.array([0.8, 0.2, 0.7], dtype=np.float32) | |
coco_annotations = coco_tools.ExportSingleImageDetectionMasksToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
detection_classes=classes, | |
detection_scores=scores, | |
detection_masks=masks) | |
expected_counts = ['04', '31', '4'] | |
for i, mask_annotation in enumerate(coco_annotations): | |
self.assertEqual(mask_annotation['segmentation']['counts'], | |
expected_counts[i]) | |
self.assertTrue(np.all(np.equal(mask.decode( | |
mask_annotation['segmentation']), masks[i]))) | |
self.assertEqual(mask_annotation['image_id'], 'first_image') | |
self.assertEqual(mask_annotation['category_id'], classes[i]) | |
self.assertAlmostEqual(mask_annotation['score'], scores[i]) | |
def testSingleImageGroundtruthExport(self): | |
masks = np.array( | |
[[[1, 1,], [1, 1]], | |
[[0, 0], [0, 1]], | |
[[0, 0], [0, 0]]], dtype=np.uint8) | |
boxes = np.array([[0, 0, 1, 1], | |
[0, 0, .5, .5], | |
[.5, .5, 1, 1]], dtype=np.float32) | |
coco_boxes = np.array([[0, 0, 1, 1], | |
[0, 0, .5, .5], | |
[.5, .5, .5, .5]], dtype=np.float32) | |
classes = np.array([1, 2, 3], dtype=np.int32) | |
is_crowd = np.array([0, 1, 0], dtype=np.int32) | |
next_annotation_id = 1 | |
expected_counts = ['04', '31', '4'] | |
# Tests exporting without passing in is_crowd (for backward compatibility). | |
coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
next_annotation_id=next_annotation_id, | |
groundtruth_boxes=boxes, | |
groundtruth_classes=classes, | |
groundtruth_masks=masks) | |
for i, annotation in enumerate(coco_annotations): | |
self.assertEqual(annotation['segmentation']['counts'], | |
expected_counts[i]) | |
self.assertTrue(np.all(np.equal(mask.decode( | |
annotation['segmentation']), masks[i]))) | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
self.assertEqual(annotation['image_id'], 'first_image') | |
self.assertEqual(annotation['category_id'], classes[i]) | |
self.assertEqual(annotation['id'], i + next_annotation_id) | |
# Tests exporting with is_crowd. | |
coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
next_annotation_id=next_annotation_id, | |
groundtruth_boxes=boxes, | |
groundtruth_classes=classes, | |
groundtruth_masks=masks, | |
groundtruth_is_crowd=is_crowd) | |
for i, annotation in enumerate(coco_annotations): | |
self.assertEqual(annotation['segmentation']['counts'], | |
expected_counts[i]) | |
self.assertTrue(np.all(np.equal(mask.decode( | |
annotation['segmentation']), masks[i]))) | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
self.assertEqual(annotation['image_id'], 'first_image') | |
self.assertEqual(annotation['category_id'], classes[i]) | |
self.assertEqual(annotation['iscrowd'], is_crowd[i]) | |
self.assertEqual(annotation['id'], i + next_annotation_id) | |
def testSingleImageGroundtruthExportWithKeypoints(self): | |
boxes = np.array([[0, 0, 1, 1], | |
[0, 0, .5, .5], | |
[.5, .5, 1, 1]], dtype=np.float32) | |
coco_boxes = np.array([[0, 0, 1, 1], | |
[0, 0, .5, .5], | |
[.5, .5, .5, .5]], dtype=np.float32) | |
keypoints = np.array([[[0, 0], [0.25, 0.25], [0.75, 0.75]], | |
[[0, 0], [0.125, 0.125], [0.375, 0.375]], | |
[[0.5, 0.5], [0.75, 0.75], [1.0, 1.0]]], | |
dtype=np.float32) | |
visibilities = np.array([[2, 2, 2], | |
[2, 2, 0], | |
[2, 0, 0]], dtype=np.int32) | |
areas = np.array([15., 16., 17.]) | |
classes = np.array([1, 2, 3], dtype=np.int32) | |
is_crowd = np.array([0, 1, 0], dtype=np.int32) | |
next_annotation_id = 1 | |
# Tests exporting without passing in is_crowd (for backward compatibility). | |
coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
next_annotation_id=next_annotation_id, | |
groundtruth_boxes=boxes, | |
groundtruth_classes=classes, | |
groundtruth_keypoints=keypoints, | |
groundtruth_keypoint_visibilities=visibilities, | |
groundtruth_area=areas) | |
for i, annotation in enumerate(coco_annotations): | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
self.assertEqual(annotation['image_id'], 'first_image') | |
self.assertEqual(annotation['category_id'], classes[i]) | |
self.assertEqual(annotation['id'], i + next_annotation_id) | |
self.assertEqual(annotation['num_keypoints'], 3 - i) | |
self.assertEqual(annotation['area'], 15.0 + i) | |
self.assertTrue( | |
np.all(np.isclose(annotation['keypoints'][0::3], keypoints[i, :, 1]))) | |
self.assertTrue( | |
np.all(np.isclose(annotation['keypoints'][1::3], keypoints[i, :, 0]))) | |
self.assertTrue( | |
np.all(np.equal(annotation['keypoints'][2::3], visibilities[i]))) | |
# Tests exporting with is_crowd. | |
coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
next_annotation_id=next_annotation_id, | |
groundtruth_boxes=boxes, | |
groundtruth_classes=classes, | |
groundtruth_keypoints=keypoints, | |
groundtruth_keypoint_visibilities=visibilities, | |
groundtruth_is_crowd=is_crowd) | |
for i, annotation in enumerate(coco_annotations): | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
self.assertEqual(annotation['image_id'], 'first_image') | |
self.assertEqual(annotation['category_id'], classes[i]) | |
self.assertEqual(annotation['iscrowd'], is_crowd[i]) | |
self.assertEqual(annotation['id'], i + next_annotation_id) | |
self.assertEqual(annotation['num_keypoints'], 3 - i) | |
self.assertTrue( | |
np.all(np.isclose(annotation['keypoints'][0::3], keypoints[i, :, 1]))) | |
self.assertTrue( | |
np.all(np.isclose(annotation['keypoints'][1::3], keypoints[i, :, 0]))) | |
self.assertTrue( | |
np.all(np.equal(annotation['keypoints'][2::3], visibilities[i]))) | |
# Testing the area values are derived from the bounding boxes. | |
if i == 0: | |
self.assertAlmostEqual(annotation['area'], 1.0) | |
else: | |
self.assertAlmostEqual(annotation['area'], 0.25) | |
def testSingleImageDetectionBoxesExportWithKeypoints(self): | |
boxes = np.array([[0, 0, 1, 1], [0, 0, .5, .5], [.5, .5, 1, 1]], | |
dtype=np.float32) | |
coco_boxes = np.array([[0, 0, 1, 1], [0, 0, .5, .5], [.5, .5, .5, .5]], | |
dtype=np.float32) | |
keypoints = np.array([[[0, 0], [0.25, 0.25], [0.75, 0.75]], | |
[[0, 0], [0.125, 0.125], [0.375, 0.375]], | |
[[0.5, 0.5], [0.75, 0.75], [1.0, 1.0]]], | |
dtype=np.float32) | |
visibilities = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=np.int32) | |
classes = np.array([1, 2, 3], dtype=np.int32) | |
scores = np.array([0.8, 0.2, 0.7], dtype=np.float32) | |
# Tests exporting without passing in is_crowd (for backward compatibility). | |
coco_annotations = coco_tools.ExportSingleImageDetectionBoxesToCoco( | |
image_id='first_image', | |
category_id_set=set([1, 2, 3]), | |
detection_boxes=boxes, | |
detection_scores=scores, | |
detection_classes=classes, | |
detection_keypoints=keypoints, | |
detection_keypoint_visibilities=visibilities) | |
for i, annotation in enumerate(coco_annotations): | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
self.assertEqual(annotation['image_id'], 'first_image') | |
self.assertEqual(annotation['category_id'], classes[i]) | |
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) | |
self.assertEqual(annotation['score'], scores[i]) | |
self.assertEqual(annotation['num_keypoints'], 3) | |
self.assertTrue( | |
np.all(np.isclose(annotation['keypoints'][0::3], keypoints[i, :, 1]))) | |
self.assertTrue( | |
np.all(np.isclose(annotation['keypoints'][1::3], keypoints[i, :, 0]))) | |
self.assertTrue( | |
np.all(np.equal(annotation['keypoints'][2::3], visibilities[i]))) | |
if __name__ == '__main__': | |
tf.test.main() | |