Spaces:
Running
Running
syntax = "proto2"; | |
package object_detection.protos; | |
import "object_detection/protos/optimizer.proto"; | |
import "object_detection/protos/preprocessor.proto"; | |
enum CheckpointVersion { | |
UNKNOWN = 0; | |
V1 = 1; | |
V2 = 2; | |
} | |
// Message for configuring DetectionModel training jobs (train.py). | |
// Next id: 30 | |
message TrainConfig { | |
// Effective batch size to use for training. | |
// For TPU (or sync SGD jobs), the batch size per core (or GPU) is going to be | |
// `batch_size` / number of cores (or `batch_size` / number of GPUs). | |
optional uint32 batch_size = 1 [default=32]; | |
// Data augmentation options. | |
repeated PreprocessingStep data_augmentation_options = 2; | |
// Whether to synchronize replicas during training. | |
optional bool sync_replicas = 3 [default=false]; | |
// How frequently to keep checkpoints. | |
optional float keep_checkpoint_every_n_hours = 4 [default=10000.0]; | |
// Optimizer used to train the DetectionModel. | |
optional Optimizer optimizer = 5; | |
// If greater than 0, clips gradients by this value. | |
optional float gradient_clipping_by_norm = 6 [default=0.0]; | |
// Checkpoint to restore variables from. Typically used to load feature | |
// extractor variables trained outside of object detection. | |
optional string fine_tune_checkpoint = 7 [default=""]; | |
// Type of checkpoint to restore variables from, e.g. 'classification' or | |
// 'detection'. Provides extensibility to from_detection_checkpoint. | |
// Typically used to load feature extractor variables from trained models. | |
optional string fine_tune_checkpoint_type = 22 [default=""]; | |
// Either "v1" or "v2". If v1, restores the checkpoint using the tensorflow | |
// v1 style of restoring checkpoints. If v2, uses the eager mode checkpoint | |
// restoration API. | |
optional CheckpointVersion fine_tune_checkpoint_version = 28 [default=V1]; | |
// [Deprecated]: use fine_tune_checkpoint_type instead. | |
// Specifies if the finetune checkpoint is from an object detection model. | |
// If from an object detection model, the model being trained should have | |
// the same parameters with the exception of the num_classes parameter. | |
// If false, it assumes the checkpoint was a object classification model. | |
optional bool from_detection_checkpoint = 8 [default=false, deprecated=true]; | |
// Whether to load all checkpoint vars that match model variable names and | |
// sizes. This option is only available if `from_detection_checkpoint` is | |
// True. | |
optional bool load_all_detection_checkpoint_vars = 19 [default = false]; | |
// Number of steps to train the DetectionModel for. If 0, will train the model | |
// indefinitely. | |
optional uint32 num_steps = 9 [default=0]; | |
// Number of training steps between replica startup. | |
// This flag must be set to 0 if sync_replicas is set to true. | |
optional float startup_delay_steps = 10 [default=15]; | |
// If greater than 0, multiplies the gradient of bias variables by this | |
// amount. | |
optional float bias_grad_multiplier = 11 [default=0]; | |
// Variables that should be updated during training. Note that variables which | |
// also match the patterns in freeze_variables will be excluded. | |
repeated string update_trainable_variables = 25; | |
// Variables that should not be updated during training. If | |
// update_trainable_variables is not empty, only eliminates the included | |
// variables according to freeze_variables patterns. | |
repeated string freeze_variables = 12; | |
// Number of replicas to aggregate before making parameter updates. | |
optional int32 replicas_to_aggregate = 13 [default=1]; | |
// Maximum number of elements to store within a queue. | |
optional int32 batch_queue_capacity = 14 [default=150, deprecated=true]; | |
// Number of threads to use for batching. | |
optional int32 num_batch_queue_threads = 15 [default=8, deprecated=true]; | |
// Maximum capacity of the queue used to prefetch assembled batches. | |
optional int32 prefetch_queue_capacity = 16 [default=5, deprecated=true]; | |
// If true, boxes with the same coordinates will be merged together. | |
// This is useful when each box can have multiple labels. | |
// Note that only Sigmoid classification losses should be used. | |
optional bool merge_multiple_label_boxes = 17 [default=false]; | |
// If true, will use multiclass scores from object annotations as ground | |
// truth. Currently only compatible with annotated image inputs. | |
optional bool use_multiclass_scores = 24 [default = false]; | |
// Whether to add regularization loss to `total_loss`. This is true by | |
// default and adds all regularization losses defined in the model to | |
// `total_loss`. | |
// Setting this option to false is very useful while debugging the model and | |
// losses. | |
optional bool add_regularization_loss = 18 [default=true]; | |
// Maximum number of boxes used during training. | |
// Set this to at least the maximum amount of boxes in the input data. | |
// Otherwise, it may cause "Data loss: Attempted to pad to a smaller size | |
// than the input element" errors. | |
optional int32 max_number_of_boxes = 20 [default=100, deprecated=true]; | |
// Whether to remove padding along `num_boxes` dimension of the groundtruth | |
// tensors. | |
optional bool unpad_groundtruth_tensors = 21 [default=true]; | |
// Whether to retain original images (i.e. not pre-processed) in the tensor | |
// dictionary, so that they can be displayed in Tensorboard. Note that this | |
// will lead to a larger memory footprint. | |
optional bool retain_original_images = 23 [default=false]; | |
// Whether to use bfloat16 for training. This is currently only supported for | |
// TPUs. | |
optional bool use_bfloat16 = 26 [default=false]; | |
// Whether to summarize gradients. | |
optional bool summarize_gradients = 27 [default=false]; | |
} | |