Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for object_detection.utils.learning_schedules.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
from six.moves import range | |
import tensorflow.compat.v1 as tf | |
from object_detection.utils import learning_schedules | |
from object_detection.utils import test_case | |
class LearningSchedulesTest(test_case.TestCase): | |
def testExponentialDecayWithBurnin(self): | |
def graph_fn(global_step): | |
learning_rate_base = 1.0 | |
learning_rate_decay_steps = 3 | |
learning_rate_decay_factor = .1 | |
burnin_learning_rate = .5 | |
burnin_steps = 2 | |
min_learning_rate = .05 | |
learning_rate = learning_schedules.exponential_decay_with_burnin( | |
global_step, learning_rate_base, learning_rate_decay_steps, | |
learning_rate_decay_factor, burnin_learning_rate, burnin_steps, | |
min_learning_rate) | |
assert learning_rate.op.name.endswith('learning_rate') | |
return (learning_rate,) | |
output_rates = [ | |
self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) | |
] | |
exp_rates = [.5, .5, 1, 1, 1, .1, .1, .1, .05] | |
self.assertAllClose(output_rates, exp_rates, rtol=1e-4) | |
def testCosineDecayWithWarmup(self): | |
def graph_fn(global_step): | |
learning_rate_base = 1.0 | |
total_steps = 100 | |
warmup_learning_rate = 0.1 | |
warmup_steps = 9 | |
learning_rate = learning_schedules.cosine_decay_with_warmup( | |
global_step, learning_rate_base, total_steps, | |
warmup_learning_rate, warmup_steps) | |
assert learning_rate.op.name.endswith('learning_rate') | |
return (learning_rate,) | |
exp_rates = [0.1, 0.5, 0.9, 1.0, 0] | |
input_global_steps = [0, 4, 8, 9, 100] | |
output_rates = [ | |
self.execute(graph_fn, [np.array(step).astype(np.int64)]) | |
for step in input_global_steps | |
] | |
self.assertAllClose(output_rates, exp_rates) | |
def testCosineDecayAfterTotalSteps(self): | |
def graph_fn(global_step): | |
learning_rate_base = 1.0 | |
total_steps = 100 | |
warmup_learning_rate = 0.1 | |
warmup_steps = 9 | |
learning_rate = learning_schedules.cosine_decay_with_warmup( | |
global_step, learning_rate_base, total_steps, | |
warmup_learning_rate, warmup_steps) | |
assert learning_rate.op.name.endswith('learning_rate') | |
return (learning_rate,) | |
exp_rates = [0] | |
input_global_steps = [101] | |
output_rates = [ | |
self.execute(graph_fn, [np.array(step).astype(np.int64)]) | |
for step in input_global_steps | |
] | |
self.assertAllClose(output_rates, exp_rates) | |
def testCosineDecayWithHoldBaseLearningRateSteps(self): | |
def graph_fn(global_step): | |
learning_rate_base = 1.0 | |
total_steps = 120 | |
warmup_learning_rate = 0.1 | |
warmup_steps = 9 | |
hold_base_rate_steps = 20 | |
learning_rate = learning_schedules.cosine_decay_with_warmup( | |
global_step, learning_rate_base, total_steps, | |
warmup_learning_rate, warmup_steps, hold_base_rate_steps) | |
assert learning_rate.op.name.endswith('learning_rate') | |
return (learning_rate,) | |
exp_rates = [0.1, 0.5, 0.9, 1.0, 1.0, 1.0, 0.999702, 0.874255, 0.577365, | |
0.0] | |
input_global_steps = [0, 4, 8, 9, 10, 29, 30, 50, 70, 120] | |
output_rates = [ | |
self.execute(graph_fn, [np.array(step).astype(np.int64)]) | |
for step in input_global_steps | |
] | |
self.assertAllClose(output_rates, exp_rates) | |
def testManualStepping(self): | |
def graph_fn(global_step): | |
boundaries = [2, 3, 7] | |
rates = [1.0, 2.0, 3.0, 4.0] | |
learning_rate = learning_schedules.manual_stepping( | |
global_step, boundaries, rates) | |
assert learning_rate.op.name.endswith('learning_rate') | |
return (learning_rate,) | |
output_rates = [ | |
self.execute(graph_fn, [np.array(i).astype(np.int64)]) | |
for i in range(10) | |
] | |
exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] | |
self.assertAllClose(output_rates, exp_rates) | |
def testManualSteppingWithWarmup(self): | |
def graph_fn(global_step): | |
boundaries = [4, 6, 8] | |
rates = [0.02, 0.10, 0.01, 0.001] | |
learning_rate = learning_schedules.manual_stepping( | |
global_step, boundaries, rates, warmup=True) | |
assert learning_rate.op.name.endswith('learning_rate') | |
return (learning_rate,) | |
output_rates = [ | |
self.execute(graph_fn, [np.array(i).astype(np.int64)]) | |
for i in range(9) | |
] | |
exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] | |
self.assertAllClose(output_rates, exp_rates) | |
def testManualSteppingWithZeroBoundaries(self): | |
def graph_fn(global_step): | |
boundaries = [] | |
rates = [0.01] | |
learning_rate = learning_schedules.manual_stepping( | |
global_step, boundaries, rates) | |
return (learning_rate,) | |
output_rates = [ | |
self.execute(graph_fn, [np.array(i).astype(np.int64)]) | |
for i in range(4) | |
] | |
exp_rates = [0.01] * 4 | |
self.assertAllClose(output_rates, exp_rates) | |
if __name__ == '__main__': | |
tf.test.main() | |