Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Functions for computing metrics like precision, recall, CorLoc and etc.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
from six.moves import range | |
def compute_precision_recall(scores, labels, num_gt): | |
"""Compute precision and recall. | |
Args: | |
scores: A float numpy array representing detection score | |
labels: A float numpy array representing weighted true/false positive labels | |
num_gt: Number of ground truth instances | |
Raises: | |
ValueError: if the input is not of the correct format | |
Returns: | |
precision: Fraction of positive instances over detected ones. This value is | |
None if no ground truth labels are present. | |
recall: Fraction of detected positive instance over all positive instances. | |
This value is None if no ground truth labels are present. | |
""" | |
if not isinstance(labels, np.ndarray) or len(labels.shape) != 1: | |
raise ValueError("labels must be single dimension numpy array") | |
if labels.dtype != np.float and labels.dtype != np.bool: | |
raise ValueError("labels type must be either bool or float") | |
if not isinstance(scores, np.ndarray) or len(scores.shape) != 1: | |
raise ValueError("scores must be single dimension numpy array") | |
if num_gt < np.sum(labels): | |
raise ValueError("Number of true positives must be smaller than num_gt.") | |
if len(scores) != len(labels): | |
raise ValueError("scores and labels must be of the same size.") | |
if num_gt == 0: | |
return None, None | |
sorted_indices = np.argsort(scores) | |
sorted_indices = sorted_indices[::-1] | |
true_positive_labels = labels[sorted_indices] | |
false_positive_labels = (true_positive_labels <= 0).astype(float) | |
cum_true_positives = np.cumsum(true_positive_labels) | |
cum_false_positives = np.cumsum(false_positive_labels) | |
precision = cum_true_positives.astype(float) / ( | |
cum_true_positives + cum_false_positives) | |
recall = cum_true_positives.astype(float) / num_gt | |
return precision, recall | |
def compute_average_precision(precision, recall): | |
"""Compute Average Precision according to the definition in VOCdevkit. | |
Precision is modified to ensure that it does not decrease as recall | |
decrease. | |
Args: | |
precision: A float [N, 1] numpy array of precisions | |
recall: A float [N, 1] numpy array of recalls | |
Raises: | |
ValueError: if the input is not of the correct format | |
Returns: | |
average_precison: The area under the precision recall curve. NaN if | |
precision and recall are None. | |
""" | |
if precision is None: | |
if recall is not None: | |
raise ValueError("If precision is None, recall must also be None") | |
return np.NAN | |
if not isinstance(precision, np.ndarray) or not isinstance( | |
recall, np.ndarray): | |
raise ValueError("precision and recall must be numpy array") | |
if precision.dtype != np.float or recall.dtype != np.float: | |
raise ValueError("input must be float numpy array.") | |
if len(precision) != len(recall): | |
raise ValueError("precision and recall must be of the same size.") | |
if not precision.size: | |
return 0.0 | |
if np.amin(precision) < 0 or np.amax(precision) > 1: | |
raise ValueError("Precision must be in the range of [0, 1].") | |
if np.amin(recall) < 0 or np.amax(recall) > 1: | |
raise ValueError("recall must be in the range of [0, 1].") | |
if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)): | |
raise ValueError("recall must be a non-decreasing array") | |
recall = np.concatenate([[0], recall, [1]]) | |
precision = np.concatenate([[0], precision, [0]]) | |
# Preprocess precision to be a non-decreasing array | |
for i in range(len(precision) - 2, -1, -1): | |
precision[i] = np.maximum(precision[i], precision[i + 1]) | |
indices = np.where(recall[1:] != recall[:-1])[0] + 1 | |
average_precision = np.sum( | |
(recall[indices] - recall[indices - 1]) * precision[indices]) | |
return average_precision | |
def compute_cor_loc(num_gt_imgs_per_class, | |
num_images_correctly_detected_per_class): | |
"""Compute CorLoc according to the definition in the following paper. | |
https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf | |
Returns nans if there are no ground truth images for a class. | |
Args: | |
num_gt_imgs_per_class: 1D array, representing number of images containing | |
at least one object instance of a particular class | |
num_images_correctly_detected_per_class: 1D array, representing number of | |
images that are correctly detected at least one object instance of a | |
particular class | |
Returns: | |
corloc_per_class: A float numpy array represents the corloc score of each | |
class | |
""" | |
return np.where( | |
num_gt_imgs_per_class == 0, np.nan, | |
num_images_correctly_detected_per_class / num_gt_imgs_per_class) | |
def compute_median_rank_at_k(tp_fp_list, k): | |
"""Computes MedianRank@k, where k is the top-scoring labels. | |
Args: | |
tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all | |
detection on a single image, where the detections are sorted by score in | |
descending order. Further, each numpy array element can have boolean or | |
float values. True positive elements have either value >0.0 or True; | |
any other value is considered false positive. | |
k: number of top-scoring proposals to take. | |
Returns: | |
median_rank: median rank of all true positive proposals among top k by | |
score. | |
""" | |
ranks = [] | |
for i in range(len(tp_fp_list)): | |
ranks.append( | |
np.where(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])] > 0)[0]) | |
concatenated_ranks = np.concatenate(ranks) | |
return np.median(concatenated_ranks) | |
def compute_recall_at_k(tp_fp_list, num_gt, k): | |
"""Computes Recall@k, MedianRank@k, where k is the top-scoring labels. | |
Args: | |
tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all | |
detection on a single image, where the detections are sorted by score in | |
descending order. Further, each numpy array element can have boolean or | |
float values. True positive elements have either value >0.0 or True; | |
any other value is considered false positive. | |
num_gt: number of groundtruth anotations. | |
k: number of top-scoring proposals to take. | |
Returns: | |
recall: recall evaluated on the top k by score detections. | |
""" | |
tp_fp_eval = [] | |
for i in range(len(tp_fp_list)): | |
tp_fp_eval.append(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])]) | |
tp_fp_eval = np.concatenate(tp_fp_eval) | |
return np.sum(tp_fp_eval) / num_gt | |