Spaces:
Running
Running
# Copyright 2016 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
r"""CelebA dataset formating. | |
Download img_align_celeba.zip from | |
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html under the | |
link "Align&Cropped Images" in the "Img" directory and list_eval_partition.txt | |
under the link "Train/Val/Test Partitions" in the "Eval" directory. Then do: | |
unzip img_align_celeba.zip | |
Use the script as follow: | |
python celeba_formatting.py \ | |
--partition_fn [PARTITION_FILE_PATH] \ | |
--file_out [OUTPUT_FILE_PATH_PREFIX] \ | |
--fn_root [CELEBA_FOLDER] \ | |
--set [SUBSET_INDEX] | |
""" | |
from __future__ import print_function | |
import os | |
import os.path | |
import scipy.io | |
import scipy.io.wavfile | |
import scipy.ndimage | |
import tensorflow as tf | |
tf.flags.DEFINE_string("file_out", "", | |
"Filename of the output .tfrecords file.") | |
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.") | |
tf.flags.DEFINE_string("partition_fn", "", "Partition file path.") | |
tf.flags.DEFINE_string("set", "", "Name of subset.") | |
FLAGS = tf.flags.FLAGS | |
def _int64_feature(value): | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) | |
def _bytes_feature(value): | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) | |
def main(): | |
"""Main converter function.""" | |
# Celeb A | |
with open(FLAGS.partition_fn, "r") as infile: | |
img_fn_list = infile.readlines() | |
img_fn_list = [elem.strip().split() for elem in img_fn_list] | |
img_fn_list = [elem[0] for elem in img_fn_list if elem[1] == FLAGS.set] | |
fn_root = FLAGS.fn_root | |
num_examples = len(img_fn_list) | |
file_out = "%s.tfrecords" % FLAGS.file_out | |
writer = tf.python_io.TFRecordWriter(file_out) | |
for example_idx, img_fn in enumerate(img_fn_list): | |
if example_idx % 1000 == 0: | |
print(example_idx, "/", num_examples) | |
image_raw = scipy.ndimage.imread(os.path.join(fn_root, img_fn)) | |
rows = image_raw.shape[0] | |
cols = image_raw.shape[1] | |
depth = image_raw.shape[2] | |
image_raw = image_raw.tostring() | |
example = tf.train.Example( | |
features=tf.train.Features( | |
feature={ | |
"height": _int64_feature(rows), | |
"width": _int64_feature(cols), | |
"depth": _int64_feature(depth), | |
"image_raw": _bytes_feature(image_raw) | |
} | |
) | |
) | |
writer.write(example.SerializeToString()) | |
writer.close() | |
if __name__ == "__main__": | |
main() | |