Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Defines hyperparameter configuration for ConvolutionalNet models. | |
Specifically, provides methods for defining and initializing TensorFlow | |
hyperparameters objects for a convolutional model as defined in: | |
seq2species.build_model | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
def parse_hparams(hparam_values='', num_filters=1): | |
"""Initializes TensorFlow hyperparameters object with default values. | |
In addition, default hyperparameter values are overwritten with the specified | |
ones, where necessary. | |
Args: | |
hparam_values: comma-separated string of name=value pairs for setting | |
particular hyperparameters. | |
num_filters: int; number of filters in the model. | |
Must be fixed outside of hyperparameter/study object as Vizier does not | |
support having inter-hyperparameter dependencies. | |
Returns: | |
tf.contrib.training.Hparams object containing the model's hyperparameters. | |
""" | |
hparams = tf.contrib.training.HParams() | |
# Specify model architecture option. | |
hparams.add_hparam('use_depthwise_separable', True) | |
# Specify number of model parameters. | |
hparams.add_hparam('filter_widths', [3] * num_filters) | |
hparams.add_hparam('filter_depths', [1] * num_filters) | |
hparams.add_hparam('pointwise_depths', [64] * num_filters) | |
hparams.add_hparam('num_fc_layers', 2) | |
hparams.add_hparam('num_fc_units', 455) | |
hparams.add_hparam('min_read_length', 100) | |
hparams.add_hparam('pooling_type', 'avg') | |
# Specify activation options. | |
hparams.add_hparam('lrelu_slope', 0.0) # Negative slope for leaky relu. | |
# Specify training options. | |
hparams.add_hparam('keep_prob', 1.0) | |
hparams.add_hparam('weight_scale', 1.0) | |
hparams.add_hparam('grad_clip_norm', 20.0) | |
hparams.add_hparam('lr_init', 0.001) | |
hparams.add_hparam('lr_decay', 0.1) | |
hparams.add_hparam('optimizer', 'adam') | |
# optimizer_hp is decay rate for 1st moment estimates for ADAM, and | |
# momentum for SGD. | |
hparams.add_hparam('optimizer_hp', 0.9) | |
hparams.add_hparam('train_steps', 400000) | |
# Overwrite defaults with specified values. | |
hparams.parse(hparam_values) | |
return hparams | |