NCTC / models /official /benchmark /benchmark_wrappers.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
3.52 kB
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils to annotate and trace benchmarks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import logging
from absl.testing import flagsaver
FLAGS = flags.FLAGS
flags.DEFINE_multi_string(
'benchmark_method_flags', None,
'Optional list of runtime flags of the form key=value. Specify '
'multiple times to specify different flags. These will override the FLAGS '
'object directly after hardcoded settings in individual benchmark methods '
'before they call _run_and_report benchmark. Example if we set '
'--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
'it\'ll only run for 10 steps. This is useful for '
'debugging/profiling workflows.')
def enable_runtime_flags(decorated_func):
"""Sets attributes from --benchmark_method_flags for method execution.
@enable_runtime_flags decorator temporarily adds flags passed in via
--benchmark_method_flags and runs the decorated function in that context.
A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
method in the snippet below with FLAGS.train_steps=5 for debugging (without
modifying the benchmark code).
class ModelBenchmark():
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
# run benchmark ...
# report benchmark results ...
def benchmark_method(self):
FLAGS.train_steps = 1000
...
self._run_and_report_benchmark()
Args:
decorated_func: The method that runs the benchmark after previous setup
execution that set some flags.
Returns:
new_func: The same method which executes in a temporary context where flag
overrides from --benchmark_method_flags are active.
"""
def runner(*args, **kwargs):
"""Creates a temporary context to activate --benchmark_method_flags."""
if FLAGS.benchmark_method_flags:
saved_flag_values = flagsaver.save_flag_values()
for key_value in FLAGS.benchmark_method_flags:
key, value = key_value.split('=', 1)
try:
numeric_float = float(value)
numeric_int = int(numeric_float)
if abs(numeric_int) == abs(numeric_float):
flag_value = numeric_int
else:
flag_value = numeric_float
except ValueError:
flag_value = value
logging.info('Setting --%s=%s', key, flag_value)
setattr(FLAGS, key, flag_value)
else:
saved_flag_values = None
try:
result = decorated_func(*args, **kwargs)
return result
finally:
if saved_flag_values:
flagsaver.restore_flag_values(saved_flag_values)
return runner