Spaces:
Running
Running
# Copyright 2016 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Binary code sample generator.""" | |
import numpy as np | |
from six.moves import xrange | |
_CRC_LINE = [ | |
[0, 1, 0], | |
[1, 1, 0], | |
[1, 0, 0] | |
] | |
_CRC_DEPTH = [1, 1, 0, 1] | |
def ComputeLineCrc(code, width, y, x, d): | |
crc = 0 | |
for dy in xrange(len(_CRC_LINE)): | |
i = y - 1 - dy | |
if i < 0: | |
continue | |
for dx in xrange(len(_CRC_LINE[dy])): | |
j = x - 2 + dx | |
if j < 0 or j >= width: | |
continue | |
crc += 1 if (code[i, j, d] != _CRC_LINE[dy][dx]) else 0 | |
return crc | |
def ComputeDepthCrc(code, y, x, d): | |
crc = 0 | |
for delta in xrange(len(_CRC_DEPTH)): | |
k = d - 1 - delta | |
if k < 0: | |
continue | |
crc += 1 if (code[y, x, k] != _CRC_DEPTH[delta]) else 0 | |
return crc | |
def GenerateSingleCode(code_shape): | |
code = np.zeros(code_shape, dtype=np.int) | |
keep_value_proba = 0.8 | |
height = code_shape[0] | |
width = code_shape[1] | |
depth = code_shape[2] | |
for d in xrange(depth): | |
for y in xrange(height): | |
for x in xrange(width): | |
v1 = ComputeLineCrc(code, width, y, x, d) | |
v2 = ComputeDepthCrc(code, y, x, d) | |
v = 1 if (v1 + v2 >= 6) else 0 | |
if np.random.rand() < keep_value_proba: | |
code[y, x, d] = v | |
else: | |
code[y, x, d] = 1 - v | |
return code | |