Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Implementation of the Parsing Covering metric. | |
Parsing Covering is a region-based metric for evaluating the task of | |
image parsing, aka panoptic segmentation. | |
Please see the paper for details: | |
"DeeperLab: Single-Shot Image Parser", Tien-Ju Yang, Maxwell D. Collins, | |
Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, | |
George Papandreou, Liang-Chieh Chen. arXiv: 1902.05093, 2019. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import numpy as np | |
import prettytable | |
import six | |
from deeplab.evaluation import base_metric | |
class ParsingCovering(base_metric.SegmentationMetric): | |
r"""Metric class for Parsing Covering. | |
Computes segmentation covering metric introduced in (Arbelaez, et al., 2010) | |
with extension to handle multi-class semantic labels (a.k.a. parsing | |
covering). Specifically, segmentation covering (SC) is defined in Eq. (8) in | |
(Arbelaez et al., 2010) as: | |
SC(c) = \sum_{R\in S}(|R| * \max_{R'\in S'}O(R,R')) / \sum_{R\in S}|R|, | |
where S are the groundtruth instance regions and S' are the predicted | |
instance regions. The parsing covering is simply: | |
PC = \sum_{c=1}^{C}SC(c) / C, | |
where C is the number of classes. | |
""" | |
def __init__(self, | |
num_categories, | |
ignored_label, | |
max_instances_per_category, | |
offset, | |
normalize_by_image_size=True): | |
"""Initialization for ParsingCovering. | |
Args: | |
num_categories: The number of segmentation categories (or "classes" in the | |
dataset. | |
ignored_label: A category id that is ignored in evaluation, e.g. the void | |
label as defined in COCO panoptic segmentation dataset. | |
max_instances_per_category: The maximum number of instances for each | |
category. Used in ensuring unique instance labels. | |
offset: The maximum number of unique labels. This is used, by multiplying | |
the ground-truth labels, to generate unique ids for individual regions | |
of overlap between groundtruth and predicted segments. | |
normalize_by_image_size: Whether to normalize groundtruth instance region | |
areas by image size. If True, groundtruth instance areas and weighted | |
IoUs will be divided by the size of the corresponding image before | |
accumulated across the dataset. | |
""" | |
super(ParsingCovering, self).__init__(num_categories, ignored_label, | |
max_instances_per_category, offset) | |
self.normalize_by_image_size = normalize_by_image_size | |
def compare_and_accumulate( | |
self, groundtruth_category_array, groundtruth_instance_array, | |
predicted_category_array, predicted_instance_array): | |
"""See base class.""" | |
# Allocate intermediate data structures. | |
max_ious = np.zeros([self.num_categories, self.max_instances_per_category], | |
dtype=np.float64) | |
gt_areas = np.zeros([self.num_categories, self.max_instances_per_category], | |
dtype=np.float64) | |
pred_areas = np.zeros( | |
[self.num_categories, self.max_instances_per_category], | |
dtype=np.float64) | |
# This is a dictionary in the format: | |
# {(category, gt_instance): [(pred_instance, intersection_area)]}. | |
intersections = collections.defaultdict(list) | |
# First, combine the category and instance labels so that every unique | |
# value for (category, instance) is assigned a unique integer label. | |
pred_segment_id = self._naively_combine_labels(predicted_category_array, | |
predicted_instance_array) | |
gt_segment_id = self._naively_combine_labels(groundtruth_category_array, | |
groundtruth_instance_array) | |
# Next, combine the groundtruth and predicted labels. Dividing up the pixels | |
# based on which groundtruth segment and which predicted segment they belong | |
# to, this will assign a different 32-bit integer label to each choice | |
# of (groundtruth segment, predicted segment), encoded as | |
# gt_segment_id * offset + pred_segment_id. | |
intersection_id_array = ( | |
gt_segment_id.astype(np.uint32) * self.offset + | |
pred_segment_id.astype(np.uint32)) | |
# For every combination of (groundtruth segment, predicted segment) with a | |
# non-empty intersection, this counts the number of pixels in that | |
# intersection. | |
intersection_ids, intersection_areas = np.unique( | |
intersection_id_array, return_counts=True) | |
# Find areas of all groundtruth and predicted instances, as well as of their | |
# intersections. | |
for intersection_id, intersection_area in six.moves.zip( | |
intersection_ids, intersection_areas): | |
gt_segment_id = intersection_id // self.offset | |
gt_category = gt_segment_id // self.max_instances_per_category | |
if gt_category == self.ignored_label: | |
continue | |
gt_instance = gt_segment_id % self.max_instances_per_category | |
gt_areas[gt_category, gt_instance] += intersection_area | |
pred_segment_id = intersection_id % self.offset | |
pred_category = pred_segment_id // self.max_instances_per_category | |
pred_instance = pred_segment_id % self.max_instances_per_category | |
pred_areas[pred_category, pred_instance] += intersection_area | |
if pred_category != gt_category: | |
continue | |
intersections[gt_category, gt_instance].append((pred_instance, | |
intersection_area)) | |
# Find maximum IoU for every groundtruth instance. | |
for gt_label, instance_intersections in six.iteritems(intersections): | |
category, gt_instance = gt_label | |
gt_area = gt_areas[category, gt_instance] | |
ious = [] | |
for pred_instance, intersection_area in instance_intersections: | |
pred_area = pred_areas[category, pred_instance] | |
union = gt_area + pred_area - intersection_area | |
ious.append(intersection_area / union) | |
max_ious[category, gt_instance] = max(ious) | |
# Normalize groundtruth instance areas by image size if necessary. | |
if self.normalize_by_image_size: | |
gt_areas /= groundtruth_category_array.size | |
# Compute per-class weighted IoUs and areas summed over all groundtruth | |
# instances. | |
self.weighted_iou_per_class += np.sum(max_ious * gt_areas, axis=-1) | |
self.gt_area_per_class += np.sum(gt_areas, axis=-1) | |
return self.result() | |
def result_per_category(self): | |
"""See base class.""" | |
return base_metric.realdiv_maybe_zero(self.weighted_iou_per_class, | |
self.gt_area_per_class) | |
def _valid_categories(self): | |
"""Categories with a "valid" value for the metric, have > 0 instances. | |
We will ignore the `ignore_label` class and other classes which have | |
groundtruth area of 0. | |
Returns: | |
Boolean array of shape `[num_categories]`. | |
""" | |
valid_categories = np.not_equal(self.gt_area_per_class, 0) | |
if self.ignored_label >= 0 and self.ignored_label < self.num_categories: | |
valid_categories[self.ignored_label] = False | |
return valid_categories | |
def detailed_results(self, is_thing=None): | |
"""See base class.""" | |
valid_categories = self._valid_categories() | |
# If known, break down which categories are valid _and_ things/stuff. | |
category_sets = collections.OrderedDict() | |
category_sets['All'] = valid_categories | |
if is_thing is not None: | |
category_sets['Things'] = np.logical_and(valid_categories, is_thing) | |
category_sets['Stuff'] = np.logical_and(valid_categories, | |
np.logical_not(is_thing)) | |
covering_per_class = self.result_per_category() | |
results = {} | |
for category_set_name, in_category_set in six.iteritems(category_sets): | |
if np.any(in_category_set): | |
results[category_set_name] = { | |
'pc': np.mean(covering_per_class[in_category_set]), | |
# The number of valid categories in this subset. | |
'n': np.sum(in_category_set.astype(np.int32)), | |
} | |
else: | |
results[category_set_name] = {'pc': 0, 'n': 0} | |
return results | |
def print_detailed_results(self, is_thing=None, print_digits=3): | |
"""See base class.""" | |
results = self.detailed_results(is_thing=is_thing) | |
tab = prettytable.PrettyTable() | |
tab.add_column('', [], align='l') | |
for fieldname in ['PC', 'N']: | |
tab.add_column(fieldname, [], align='r') | |
for category_set, subset_results in six.iteritems(results): | |
data_cols = [ | |
round(subset_results['pc'], print_digits) * 100, subset_results['n'] | |
] | |
tab.add_row([category_set] + data_cols) | |
print(tab) | |
def result(self): | |
"""See base class.""" | |
covering_per_class = self.result_per_category() | |
valid_categories = self._valid_categories() | |
if not np.any(valid_categories): | |
return 0. | |
return np.mean(covering_per_class[valid_categories]) | |
def merge(self, other_instance): | |
"""See base class.""" | |
self.weighted_iou_per_class += other_instance.weighted_iou_per_class | |
self.gt_area_per_class += other_instance.gt_area_per_class | |
def reset(self): | |
"""See base class.""" | |
self.weighted_iou_per_class = np.zeros( | |
self.num_categories, dtype=np.float64) | |
self.gt_area_per_class = np.zeros(self.num_categories, dtype=np.float64) | |