NCTC / models /research /ptn /nets /im2vox_factory.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
3.65 kB
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Factory module for getting the complete image to voxel generation network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import perspective_projector
from nets import ptn_encoder
from nets import ptn_vox_decoder
_NAME_TO_NETS = {
'ptn_encoder': ptn_encoder,
'ptn_vox_decoder': ptn_vox_decoder,
'perspective_projector': perspective_projector,
}
def _get_network(name):
"""Gets a single encoder/decoder network model."""
if name not in _NAME_TO_NETS:
raise ValueError('Network name [%s] not recognized.' % name)
return _NAME_TO_NETS[name].model
def get(params, is_training=False, reuse=False, run_projection=True):
"""Factory function to get the training/pretraining im->vox model (NIPS16).
Args:
params: Different parameters used througout ptn, typically FLAGS (dict).
is_training: Set to True if while training (boolean).
reuse: Set as True if sharing variables with a model that has already
been built (boolean).
run_projection: Set as False if not interested in mask and projection
images. Useful in evaluation routine (boolean).
Returns:
Model function for network (inputs to outputs).
"""
def model(inputs):
"""Model function corresponding to a specific network architecture."""
outputs = {}
# First, build the encoder
encoder_fn = _get_network(params.encoder_name)
with tf.variable_scope('encoder', reuse=reuse):
# Produces id/pose units
enc_outputs = encoder_fn(inputs['images_1'], params, is_training)
outputs['ids_1'] = enc_outputs['ids']
# Second, build the decoder and projector
decoder_fn = _get_network(params.decoder_name)
with tf.variable_scope('decoder', reuse=reuse):
outputs['voxels_1'] = decoder_fn(outputs['ids_1'], params, is_training)
if run_projection:
projector_fn = _get_network(params.projector_name)
with tf.variable_scope('projector', reuse=reuse):
outputs['projs_1'] = projector_fn(
outputs['voxels_1'], inputs['matrix_1'], params, is_training)
# Infer the ground-truth mask
with tf.variable_scope('oracle', reuse=reuse):
outputs['masks_1'] = projector_fn(inputs['voxels'], inputs['matrix_1'],
params, False)
# Third, build the entire graph (bundled strategy described in PTN paper)
for k in range(1, params.step_size):
with tf.variable_scope('projector', reuse=True):
outputs['projs_%d' % (k + 1)] = projector_fn(
outputs['voxels_1'], inputs['matrix_%d' %
(k + 1)], params, is_training)
with tf.variable_scope('oracle', reuse=True):
outputs['masks_%d' % (k + 1)] = projector_fn(
inputs['voxels'], inputs['matrix_%d' % (k + 1)], params, False)
return outputs
return model