Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Optimizer factory class.""" | |
from typing import Union | |
import tensorflow as tf | |
import tensorflow_addons.optimizers as tfa_optimizers | |
from official.modeling.optimization import lr_schedule | |
from official.modeling.optimization.configs import optimization_config as opt_cfg | |
from official.nlp import optimization as nlp_optimization | |
OPTIMIZERS_CLS = { | |
'sgd': tf.keras.optimizers.SGD, | |
'adam': tf.keras.optimizers.Adam, | |
'adamw': nlp_optimization.AdamWeightDecay, | |
'lamb': tfa_optimizers.LAMB, | |
'rmsprop': tf.keras.optimizers.RMSprop | |
} | |
LR_CLS = { | |
'stepwise': tf.keras.optimizers.schedules.PiecewiseConstantDecay, | |
'polynomial': tf.keras.optimizers.schedules.PolynomialDecay, | |
'exponential': tf.keras.optimizers.schedules.ExponentialDecay, | |
'cosine': tf.keras.experimental.CosineDecay | |
} | |
WARMUP_CLS = { | |
'linear': lr_schedule.LinearWarmup, | |
'polynomial': lr_schedule.PolynomialWarmUp | |
} | |
class OptimizerFactory(object): | |
"""Optimizer factory class. | |
This class builds learning rate and optimizer based on an optimization config. | |
To use this class, you need to do the following: | |
(1) Define optimization config, this includes optimizer, and learning rate | |
schedule. | |
(2) Initialize the class using the optimization config. | |
(3) Build learning rate. | |
(4) Build optimizer. | |
This is a typical example for using this class: | |
params = { | |
'optimizer': { | |
'type': 'sgd', | |
'sgd': {'learning_rate': 0.1, 'momentum': 0.9} | |
}, | |
'learning_rate': { | |
'type': 'stepwise', | |
'stepwise': {'boundaries': [10000, 20000], | |
'values': [0.1, 0.01, 0.001]} | |
}, | |
'warmup': { | |
'type': 'linear', | |
'linear': {'warmup_steps': 500, 'warmup_learning_rate': 0.01} | |
} | |
} | |
opt_config = OptimizationConfig(params) | |
opt_factory = OptimizerFactory(opt_config) | |
lr = opt_factory.build_learning_rate() | |
optimizer = opt_factory.build_optimizer(lr) | |
""" | |
def __init__(self, config: opt_cfg.OptimizationConfig): | |
"""Initializing OptimizerFactory. | |
Args: | |
config: OptimizationConfig instance contain optimization config. | |
""" | |
self._config = config | |
self._optimizer_config = config.optimizer.get() | |
self._optimizer_type = config.optimizer.type | |
if self._optimizer_config is None: | |
raise ValueError('Optimizer type must be specified') | |
self._lr_config = config.learning_rate.get() | |
self._lr_type = config.learning_rate.type | |
self._warmup_config = config.warmup.get() | |
self._warmup_type = config.warmup.type | |
def build_learning_rate(self): | |
"""Build learning rate. | |
Builds learning rate from config. Learning rate schedule is built according | |
to the learning rate config. If there is no learning rate config, optimizer | |
learning rate is returned. | |
Returns: | |
tf.keras.optimizers.schedules.LearningRateSchedule instance. If no | |
learning rate schedule defined, optimizer_config.learning_rate is | |
returned. | |
""" | |
# TODO(arashwan): Explore if we want to only allow explicit const lr sched. | |
if not self._lr_config: | |
lr = self._optimizer_config.learning_rate | |
else: | |
lr = LR_CLS[self._lr_type](**self._lr_config.as_dict()) | |
if self._warmup_config: | |
lr = WARMUP_CLS[self._warmup_type](lr, **self._warmup_config.as_dict()) | |
return lr | |
def build_optimizer( | |
self, lr: Union[tf.keras.optimizers.schedules.LearningRateSchedule, | |
float]): | |
"""Build optimizer. | |
Builds optimizer from config. It takes learning rate as input, and builds | |
the optimizer according to the optimizer config. Typically, the learning | |
rate built using self.build_lr() is passed as an argument to this method. | |
Args: | |
lr: A floating point value, or | |
a tf.keras.optimizers.schedules.LearningRateSchedule instance. | |
Returns: | |
tf.keras.optimizers.Optimizer instance. | |
""" | |
optimizer_dict = self._optimizer_config.as_dict() | |
optimizer_dict['learning_rate'] = lr | |
optimizer = OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict) | |
return optimizer | |