Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Functions and classes related to training performance.""" | |
import tensorflow as tf | |
def configure_optimizer(optimizer, | |
use_float16=False, | |
use_graph_rewrite=False, | |
loss_scale="dynamic"): | |
"""Configures optimizer object with performance options.""" | |
if use_float16: | |
# Wraps optimizer with a LossScaleOptimizer. This is done automatically | |
# in compile() with the "mixed_float16" policy, but since we do not call | |
# compile(), we must wrap the optimizer manually. | |
optimizer = ( | |
tf.keras.mixed_precision.experimental.LossScaleOptimizer( | |
optimizer, loss_scale=loss_scale)) | |
if use_graph_rewrite: | |
# Note: the model dtype must be 'float32', which will ensure | |
# tf.ckeras.mixed_precision and | |
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double | |
# up. | |
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite( | |
optimizer) | |
return optimizer | |
def set_mixed_precision_policy(dtype, loss_scale=None): | |
"""Sets mix precision policy.""" | |
if dtype == tf.float16: | |
policy = tf.keras.mixed_precision.experimental.Policy( | |
'mixed_float16', loss_scale=loss_scale) | |
tf.keras.mixed_precision.experimental.set_policy(policy) | |
elif dtype == tf.bfloat16: | |
policy = tf.keras.mixed_precision.experimental.Policy( | |
'mixed_bfloat16') | |
tf.keras.mixed_precision.experimental.set_policy(policy) | |
elif dtype == tf.float32: | |
tf.keras.mixed_precision.experimental.set_policy('float32') | |
else: | |
raise ValueError("Unexpected dtype: %s" % dtype) | |