Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Create masked LM/next sentence masked_lm TF examples for BERT.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import random | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import tensorflow as tf | |
from official.nlp.bert import tokenization | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string("input_file", None, | |
"Input raw text file (or comma-separated list of files).") | |
flags.DEFINE_string( | |
"output_file", None, | |
"Output TF example file (or comma-separated list of files).") | |
flags.DEFINE_string("vocab_file", None, | |
"The vocabulary file that the BERT model was trained on.") | |
flags.DEFINE_bool( | |
"do_lower_case", True, | |
"Whether to lower case the input text. Should be True for uncased " | |
"models and False for cased models.") | |
flags.DEFINE_bool( | |
"do_whole_word_mask", False, | |
"Whether to use whole word masking rather than per-WordPiece masking.") | |
flags.DEFINE_bool( | |
"gzip_compress", False, | |
"Whether to use `GZIP` compress option to get compressed TFRecord files.") | |
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") | |
flags.DEFINE_integer("max_predictions_per_seq", 20, | |
"Maximum number of masked LM predictions per sequence.") | |
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") | |
flags.DEFINE_integer( | |
"dupe_factor", 10, | |
"Number of times to duplicate the input data (with different masks).") | |
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") | |
flags.DEFINE_float( | |
"short_seq_prob", 0.1, | |
"Probability of creating sequences which are shorter than the " | |
"maximum length.") | |
class TrainingInstance(object): | |
"""A single training instance (sentence pair).""" | |
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, | |
is_random_next): | |
self.tokens = tokens | |
self.segment_ids = segment_ids | |
self.is_random_next = is_random_next | |
self.masked_lm_positions = masked_lm_positions | |
self.masked_lm_labels = masked_lm_labels | |
def __str__(self): | |
s = "" | |
s += "tokens: %s\n" % (" ".join( | |
[tokenization.printable_text(x) for x in self.tokens])) | |
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) | |
s += "is_random_next: %s\n" % self.is_random_next | |
s += "masked_lm_positions: %s\n" % (" ".join( | |
[str(x) for x in self.masked_lm_positions])) | |
s += "masked_lm_labels: %s\n" % (" ".join( | |
[tokenization.printable_text(x) for x in self.masked_lm_labels])) | |
s += "\n" | |
return s | |
def __repr__(self): | |
return self.__str__() | |
def write_instance_to_example_files(instances, tokenizer, max_seq_length, | |
max_predictions_per_seq, output_files, | |
gzip_compress): | |
"""Create TF example files from `TrainingInstance`s.""" | |
writers = [] | |
for output_file in output_files: | |
writers.append( | |
tf.io.TFRecordWriter( | |
output_file, options="GZIP" if gzip_compress else "")) | |
writer_index = 0 | |
total_written = 0 | |
for (inst_index, instance) in enumerate(instances): | |
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) | |
input_mask = [1] * len(input_ids) | |
segment_ids = list(instance.segment_ids) | |
assert len(input_ids) <= max_seq_length | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(0) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
masked_lm_positions = list(instance.masked_lm_positions) | |
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) | |
masked_lm_weights = [1.0] * len(masked_lm_ids) | |
while len(masked_lm_positions) < max_predictions_per_seq: | |
masked_lm_positions.append(0) | |
masked_lm_ids.append(0) | |
masked_lm_weights.append(0.0) | |
next_sentence_label = 1 if instance.is_random_next else 0 | |
features = collections.OrderedDict() | |
features["input_ids"] = create_int_feature(input_ids) | |
features["input_mask"] = create_int_feature(input_mask) | |
features["segment_ids"] = create_int_feature(segment_ids) | |
features["masked_lm_positions"] = create_int_feature(masked_lm_positions) | |
features["masked_lm_ids"] = create_int_feature(masked_lm_ids) | |
features["masked_lm_weights"] = create_float_feature(masked_lm_weights) | |
features["next_sentence_labels"] = create_int_feature([next_sentence_label]) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writers[writer_index].write(tf_example.SerializeToString()) | |
writer_index = (writer_index + 1) % len(writers) | |
total_written += 1 | |
if inst_index < 20: | |
logging.info("*** Example ***") | |
logging.info("tokens: %s", " ".join( | |
[tokenization.printable_text(x) for x in instance.tokens])) | |
for feature_name in features.keys(): | |
feature = features[feature_name] | |
values = [] | |
if feature.int64_list.value: | |
values = feature.int64_list.value | |
elif feature.float_list.value: | |
values = feature.float_list.value | |
logging.info("%s: %s", feature_name, " ".join([str(x) for x in values])) | |
for writer in writers: | |
writer.close() | |
logging.info("Wrote %d total instances", total_written) | |
def create_int_feature(values): | |
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return feature | |
def create_float_feature(values): | |
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return feature | |
def create_training_instances(input_files, | |
tokenizer, | |
max_seq_length, | |
dupe_factor, | |
short_seq_prob, | |
masked_lm_prob, | |
max_predictions_per_seq, | |
rng, | |
do_whole_word_mask=False): | |
"""Create `TrainingInstance`s from raw text.""" | |
all_documents = [[]] | |
# Input file format: | |
# (1) One sentence per line. These should ideally be actual sentences, not | |
# entire paragraphs or arbitrary spans of text. (Because we use the | |
# sentence boundaries for the "next sentence prediction" task). | |
# (2) Blank lines between documents. Document boundaries are needed so | |
# that the "next sentence prediction" task doesn't span between documents. | |
for input_file in input_files: | |
with tf.io.gfile.GFile(input_file, "rb") as reader: | |
while True: | |
line = tokenization.convert_to_unicode(reader.readline()) | |
if not line: | |
break | |
line = line.strip() | |
# Empty lines are used as document delimiters | |
if not line: | |
all_documents.append([]) | |
tokens = tokenizer.tokenize(line) | |
if tokens: | |
all_documents[-1].append(tokens) | |
# Remove empty documents | |
all_documents = [x for x in all_documents if x] | |
rng.shuffle(all_documents) | |
vocab_words = list(tokenizer.vocab.keys()) | |
instances = [] | |
for _ in range(dupe_factor): | |
for document_index in range(len(all_documents)): | |
instances.extend( | |
create_instances_from_document( | |
all_documents, document_index, max_seq_length, short_seq_prob, | |
masked_lm_prob, max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask)) | |
rng.shuffle(instances) | |
return instances | |
def create_instances_from_document( | |
all_documents, document_index, max_seq_length, short_seq_prob, | |
masked_lm_prob, max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask=False): | |
"""Creates `TrainingInstance`s for a single document.""" | |
document = all_documents[document_index] | |
# Account for [CLS], [SEP], [SEP] | |
max_num_tokens = max_seq_length - 3 | |
# We *usually* want to fill up the entire sequence since we are padding | |
# to `max_seq_length` anyways, so short sequences are generally wasted | |
# computation. However, we *sometimes* | |
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter | |
# sequences to minimize the mismatch between pre-training and fine-tuning. | |
# The `target_seq_length` is just a rough target however, whereas | |
# `max_seq_length` is a hard limit. | |
target_seq_length = max_num_tokens | |
if rng.random() < short_seq_prob: | |
target_seq_length = rng.randint(2, max_num_tokens) | |
# We DON'T just concatenate all of the tokens from a document into a long | |
# sequence and choose an arbitrary split point because this would make the | |
# next sentence prediction task too easy. Instead, we split the input into | |
# segments "A" and "B" based on the actual "sentences" provided by the user | |
# input. | |
instances = [] | |
current_chunk = [] | |
current_length = 0 | |
i = 0 | |
while i < len(document): | |
segment = document[i] | |
current_chunk.append(segment) | |
current_length += len(segment) | |
if i == len(document) - 1 or current_length >= target_seq_length: | |
if current_chunk: | |
# `a_end` is how many segments from `current_chunk` go into the `A` | |
# (first) sentence. | |
a_end = 1 | |
if len(current_chunk) >= 2: | |
a_end = rng.randint(1, len(current_chunk) - 1) | |
tokens_a = [] | |
for j in range(a_end): | |
tokens_a.extend(current_chunk[j]) | |
tokens_b = [] | |
# Random next | |
is_random_next = False | |
if len(current_chunk) == 1 or rng.random() < 0.5: | |
is_random_next = True | |
target_b_length = target_seq_length - len(tokens_a) | |
# This should rarely go for more than one iteration for large | |
# corpora. However, just to be careful, we try to make sure that | |
# the random document is not the same as the document | |
# we're processing. | |
for _ in range(10): | |
random_document_index = rng.randint(0, len(all_documents) - 1) | |
if random_document_index != document_index: | |
break | |
random_document = all_documents[random_document_index] | |
random_start = rng.randint(0, len(random_document) - 1) | |
for j in range(random_start, len(random_document)): | |
tokens_b.extend(random_document[j]) | |
if len(tokens_b) >= target_b_length: | |
break | |
# We didn't actually use these segments so we "put them back" so | |
# they don't go to waste. | |
num_unused_segments = len(current_chunk) - a_end | |
i -= num_unused_segments | |
# Actual next | |
else: | |
is_random_next = False | |
for j in range(a_end, len(current_chunk)): | |
tokens_b.extend(current_chunk[j]) | |
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) | |
assert len(tokens_a) >= 1 | |
assert len(tokens_b) >= 1 | |
tokens = [] | |
segment_ids = [] | |
tokens.append("[CLS]") | |
segment_ids.append(0) | |
for token in tokens_a: | |
tokens.append(token) | |
segment_ids.append(0) | |
tokens.append("[SEP]") | |
segment_ids.append(0) | |
for token in tokens_b: | |
tokens.append(token) | |
segment_ids.append(1) | |
tokens.append("[SEP]") | |
segment_ids.append(1) | |
(tokens, masked_lm_positions, | |
masked_lm_labels) = create_masked_lm_predictions( | |
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask) | |
instance = TrainingInstance( | |
tokens=tokens, | |
segment_ids=segment_ids, | |
is_random_next=is_random_next, | |
masked_lm_positions=masked_lm_positions, | |
masked_lm_labels=masked_lm_labels) | |
instances.append(instance) | |
current_chunk = [] | |
current_length = 0 | |
i += 1 | |
return instances | |
MaskedLmInstance = collections.namedtuple("MaskedLmInstance", | |
["index", "label"]) | |
def create_masked_lm_predictions(tokens, masked_lm_prob, | |
max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask): | |
"""Creates the predictions for the masked LM objective.""" | |
cand_indexes = [] | |
for (i, token) in enumerate(tokens): | |
if token == "[CLS]" or token == "[SEP]": | |
continue | |
# Whole Word Masking means that if we mask all of the wordpieces | |
# corresponding to an original word. When a word has been split into | |
# WordPieces, the first token does not have any marker and any subsequence | |
# tokens are prefixed with ##. So whenever we see the ## token, we | |
# append it to the previous set of word indexes. | |
# | |
# Note that Whole Word Masking does *not* change the training code | |
# at all -- we still predict each WordPiece independently, softmaxed | |
# over the entire vocabulary. | |
if (do_whole_word_mask and len(cand_indexes) >= 1 and | |
token.startswith("##")): | |
cand_indexes[-1].append(i) | |
else: | |
cand_indexes.append([i]) | |
rng.shuffle(cand_indexes) | |
output_tokens = list(tokens) | |
num_to_predict = min(max_predictions_per_seq, | |
max(1, int(round(len(tokens) * masked_lm_prob)))) | |
masked_lms = [] | |
covered_indexes = set() | |
for index_set in cand_indexes: | |
if len(masked_lms) >= num_to_predict: | |
break | |
# If adding a whole-word mask would exceed the maximum number of | |
# predictions, then just skip this candidate. | |
if len(masked_lms) + len(index_set) > num_to_predict: | |
continue | |
is_any_index_covered = False | |
for index in index_set: | |
if index in covered_indexes: | |
is_any_index_covered = True | |
break | |
if is_any_index_covered: | |
continue | |
for index in index_set: | |
covered_indexes.add(index) | |
masked_token = None | |
# 80% of the time, replace with [MASK] | |
if rng.random() < 0.8: | |
masked_token = "[MASK]" | |
else: | |
# 10% of the time, keep original | |
if rng.random() < 0.5: | |
masked_token = tokens[index] | |
# 10% of the time, replace with random word | |
else: | |
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)] | |
output_tokens[index] = masked_token | |
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index])) | |
assert len(masked_lms) <= num_to_predict | |
masked_lms = sorted(masked_lms, key=lambda x: x.index) | |
masked_lm_positions = [] | |
masked_lm_labels = [] | |
for p in masked_lms: | |
masked_lm_positions.append(p.index) | |
masked_lm_labels.append(p.label) | |
return (output_tokens, masked_lm_positions, masked_lm_labels) | |
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): | |
"""Truncates a pair of sequences to a maximum sequence length.""" | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_num_tokens: | |
break | |
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b | |
assert len(trunc_tokens) >= 1 | |
# We want to sometimes truncate from the front and sometimes from the | |
# back to add more randomness and avoid biases. | |
if rng.random() < 0.5: | |
del trunc_tokens[0] | |
else: | |
trunc_tokens.pop() | |
def main(_): | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
input_files = [] | |
for input_pattern in FLAGS.input_file.split(","): | |
input_files.extend(tf.io.gfile.glob(input_pattern)) | |
logging.info("*** Reading from input files ***") | |
for input_file in input_files: | |
logging.info(" %s", input_file) | |
rng = random.Random(FLAGS.random_seed) | |
instances = create_training_instances( | |
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, | |
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, | |
rng, FLAGS.do_whole_word_mask) | |
output_files = FLAGS.output_file.split(",") | |
logging.info("*** Writing to output files ***") | |
for output_file in output_files: | |
logging.info(" %s", output_file) | |
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, | |
FLAGS.max_predictions_per_seq, output_files, | |
FLAGS.gzip_compress) | |
if __name__ == "__main__": | |
flags.mark_flag_as_required("input_file") | |
flags.mark_flag_as_required("output_file") | |
flags.mark_flag_as_required("vocab_file") | |
app.run(main) | |