Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for Keras-based einsum layer.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import | |
from official.nlp.modeling.layers import dense_einsum | |
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It | |
# guarantees forward compatibility of this code for the V2 switchover. | |
class DenseEinsumLayer(keras_parameterized.TestCase): | |
def test_3D_einsum_with_two_bound_dimensions(self): | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=(64,), num_summed_dimensions=2) | |
# Create a 4-dimensional input (the first dimension is implicit). | |
input_tensor = tf.keras.Input(shape=(None, 40, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(test_layer._einsum_string, "abcd,cde->abe") | |
self.assertEqual(test_layer._kernel_shape, (40, 80, 64)) | |
def test_3D_einsum_with_one_bound_dimensions(self): | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=(64, 32), num_summed_dimensions=1) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(test_layer._einsum_string, "abc,cde->abde") | |
self.assertEqual(test_layer._kernel_shape, (80, 64, 32)) | |
def test_2D_einsum_with_one_bound_dimensions(self): | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=(64,), num_summed_dimensions=1) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(test_layer._einsum_string, "abc,cd->abd") | |
self.assertEqual(test_layer._kernel_shape, (80, 64)) | |
def test_bias_term_can_be_disabled(self): | |
# A layer created using the bias should have two weights. | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=64, num_summed_dimensions=1, use_bias=True) | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(2, len(test_layer.get_weights())) | |
# A layer created without the bias should have only one weight. | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=64, num_summed_dimensions=1, use_bias=False) | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(1, len(test_layer.get_weights())) | |
def test_activation(self): | |
# Create a model that does not use an activation. | |
no_activation_layer = dense_einsum.DenseEinsum( | |
output_shape=64, num_summed_dimensions=1, activation=None) | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
output_tensor = no_activation_layer(input_tensor) | |
no_activation_model = tf.keras.Model(input_tensor, output_tensor) | |
# Create a model that uses a softmax activation. | |
activation_layer = dense_einsum.DenseEinsum( | |
output_shape=64, num_summed_dimensions=1, activation="softmax") | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
output_tensor = activation_layer(input_tensor) | |
activation_model = tf.keras.Model(input_tensor, output_tensor) | |
# Make sure the models' weights are identical. | |
activation_model.set_weights(no_activation_model.get_weights()) | |
# Predict using each model on the same input data. The output should be | |
# different, since one is using a softmax - even though the models' weights | |
# are the same. | |
input_values = 10 * np.random.random_sample((10, 4, 80)) | |
non_activated_data = no_activation_model.predict(input_values) | |
activated_data = activation_model.predict(input_values) | |
self.assertNotAllClose(activated_data, non_activated_data) | |
def test_non_iterable_output_shape(self): | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=64, num_summed_dimensions=1) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
input_tensor = tf.keras.Input(shape=(None, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(test_layer._einsum_string, "abc,cd->abd") | |
self.assertEqual(test_layer._kernel_shape, (80, 64)) | |
def test_with_explicit_initializer(self): | |
test_layer = dense_einsum.DenseEinsum( | |
output_shape=(64,), | |
num_summed_dimensions=2, | |
kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) | |
# Create a 4-dimensional input (the first dimension is implicit). | |
input_tensor = tf.keras.Input(shape=(None, 40, 80)) | |
_ = test_layer(input_tensor) | |
self.assertEqual(test_layer._einsum_string, "abcd,cde->abe") | |
self.assertEqual(test_layer._kernel_shape, (40, 80, 64)) | |
if __name__ == "__main__": | |
tf.test.main() | |