NCTC / models /official /nlp /modeling /layers /gated_feedforward_test.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
5.01 kB
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras-based gated feedforward layer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling.layers import gated_feedforward
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class GatedFeedforwardTest(keras_parameterized.TestCase):
def tearDown(self):
super(GatedFeedforwardTest, self).tearDown()
tf.keras.mixed_precision.experimental.set_policy("float32")
@parameterized.parameters(
(True, 1, "after_residual", "float32"),
(True, 1, "after_residual", "mixed_float16"),
(False, 4, "before_residual", "float32"),
(False, 4, "before_residual", "mixed_float16"),
(True, 4, "after_residual", "float32"),
(True, 4, "after_residual", "mixed_float16"),
(False, 1, "before_residual", "float32"),
(False, 1, "before_residual", "mixed_float16"),
)
def test_layer_creation(self, use_gate, num_blocks, dropout_position, dtype):
tf.keras.mixed_precision.experimental.set_policy(dtype)
kwargs = dict(
intermediate_size=128,
intermediate_activation="relu",
dropout=0.1,
use_gate=use_gate,
num_blocks=num_blocks,
dropout_position=dropout_position,
kernel_initializer="glorot_uniform",
bias_initializer="zeros")
test_layer = gated_feedforward.GatedFeedforward(**kwargs)
sequence_length = 64
width = 128
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf.keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
@parameterized.parameters(
(True, 1, "after_residual", "float32"),
(True, 1, "after_residual", "mixed_float16"),
(False, 4, "before_residual", "float32"),
(False, 4, "before_residual", "mixed_float16"),
(True, 4, "after_residual", "float32"),
(True, 4, "after_residual", "mixed_float16"),
(False, 1, "before_residual", "float32"),
(False, 1, "before_residual", "mixed_float16"),
)
def test_layer_invocation(self, use_gate, num_blocks, dropout_position,
dtype):
tf.keras.mixed_precision.experimental.set_policy(dtype)
kwargs = dict(
intermediate_size=16,
intermediate_activation="relu",
dropout=0.1,
use_gate=use_gate,
num_blocks=num_blocks,
dropout_position=dropout_position,
kernel_initializer="glorot_uniform",
bias_initializer="zeros")
test_layer = gated_feedforward.GatedFeedforward(**kwargs)
sequence_length = 16
width = 32
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf.keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# Create a model from the test layer.
model = tf.keras.Model(data_tensor, output_tensor)
# Invoke the model on test data.
batch_size = 6
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, width))
output_data = model.predict(input_data)
self.assertEqual(output_data.shape, (batch_size, sequence_length, width))
def test_serialize_deserialize(self):
kwargs = dict(
intermediate_size=16,
intermediate_activation="relu",
dropout=0.1,
use_gate=False,
num_blocks=4,
dropout_position="after_residual",
kernel_initializer="glorot_uniform",
bias_initializer="zeros")
test_layer = gated_feedforward.GatedFeedforward(**kwargs)
new_layer = gated_feedforward.GatedFeedforward.from_config(
test_layer.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(test_layer.get_config(), new_layer.get_config())
if __name__ == "__main__":
tf.test.main()