Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Keras-based one-hot embedding layer.""" | |
# pylint: disable=g-classes-have-attributes | |
from __future__ import absolute_import | |
from __future__ import division | |
# from __future__ import google_type_annotations | |
from __future__ import print_function | |
import tensorflow as tf | |
class OnDeviceEmbedding(tf.keras.layers.Layer): | |
"""Performs an embedding lookup suitable for accelerator devices. | |
This layer uses either tf.gather or tf.one_hot to translate integer indices to | |
float embeddings. | |
Arguments: | |
vocab_size: Number of elements in the vocabulary. | |
embedding_width: Output size of the embedding layer. | |
initializer: The initializer to use for the embedding weights. Defaults to | |
"glorot_uniform". | |
use_one_hot: Whether to use tf.one_hot over tf.gather for the embedding | |
lookup. Defaults to False (that is, using tf.gather). Setting this option | |
to True may improve performance, especially on small vocabulary sizes, but | |
will generally require more memory. | |
""" | |
def __init__(self, | |
vocab_size, | |
embedding_width, | |
initializer="glorot_uniform", | |
use_one_hot=False, | |
**kwargs): | |
super(OnDeviceEmbedding, self).__init__(**kwargs) | |
self._vocab_size = vocab_size | |
self._embedding_width = embedding_width | |
self._initializer = initializer | |
self._use_one_hot = use_one_hot | |
def get_config(self): | |
config = { | |
"vocab_size": self._vocab_size, | |
"embedding_width": self._embedding_width, | |
"initializer": self._initializer, | |
"use_one_hot": self._use_one_hot, | |
} | |
base_config = super(OnDeviceEmbedding, self).get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
def build(self, input_shape): | |
self.embeddings = self.add_weight( | |
"embeddings", | |
shape=[self._vocab_size, self._embedding_width], | |
initializer=self._initializer, | |
dtype=tf.float32) | |
super(OnDeviceEmbedding, self).build(input_shape) | |
def call(self, inputs): | |
flat_inputs = tf.reshape(inputs, [-1]) | |
if self._use_one_hot: | |
one_hot_data = tf.one_hot( | |
flat_inputs, depth=self._vocab_size, dtype=self.embeddings.dtype) | |
embeddings = tf.matmul(one_hot_data, self.embeddings) | |
else: | |
embeddings = tf.gather(self.embeddings, flat_inputs) | |
embeddings = tf.reshape( | |
embeddings, | |
# Work around b/142213824: prefer concat to shape over a Python list. | |
tf.concat([tf.shape(inputs), [self._embedding_width]], axis=0)) | |
embeddings.set_shape(inputs.shape.as_list() + [self._embedding_width]) | |
return embeddings | |