NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
3.36 kB
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Span labeling network."""
# pylint: disable=g-classes-have-attributes
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import tensorflow as tf
@tf.keras.utils.register_keras_serializable(package='Text')
class SpanLabeling(tf.keras.Model):
"""Span labeling network head for BERT modeling.
This network implements a simple single-span labeler based on a dense layer.
Arguments:
input_width: The innermost dimension of the input tensor to this network.
activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults to
a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or
'predictions'.
"""
def __init__(self,
input_width,
activation=None,
initializer='glorot_uniform',
output='logits',
**kwargs):
self._self_setattr_tracking = False
self._config = {
'input_width': input_width,
'activation': activation,
'initializer': initializer,
'output': output,
}
sequence_data = tf.keras.layers.Input(
shape=(None, input_width), name='sequence_data', dtype=tf.float32)
intermediate_logits = tf.keras.layers.Dense(
2, # This layer predicts start location and end location.
activation=activation,
kernel_initializer=initializer,
name='predictions/transform/logits')(
sequence_data)
self.start_logits, self.end_logits = (
tf.keras.layers.Lambda(self._split_output_tensor)(intermediate_logits))
start_predictions = tf.keras.layers.Activation(tf.nn.log_softmax)(
self.start_logits)
end_predictions = tf.keras.layers.Activation(tf.nn.log_softmax)(
self.end_logits)
if output == 'logits':
output_tensors = [self.start_logits, self.end_logits]
elif output == 'predictions':
output_tensors = [start_predictions, end_predictions]
else:
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
super(SpanLabeling, self).__init__(
inputs=[sequence_data], outputs=output_tensors, **kwargs)
def _split_output_tensor(self, tensor):
transposed_tensor = tf.transpose(tensor, [2, 0, 1])
return tf.unstack(transposed_tensor)
def get_config(self):
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)