Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Common NHNet/Bert2Bert configuration.""" | |
from typing import List, Text | |
import dataclasses | |
from official.modeling.hyperparams import base_config | |
class BERT2BERTConfig(base_config.Config): | |
"""High-level configurations for BERT2BERT model. | |
These include parameters that are not directly related to the experiment, | |
e.g. encoder, decoder, prediction, training, etc. | |
""" | |
vocab_size: int = 30522 | |
hidden_size: int = 768 | |
num_hidden_layers: int = 12 | |
num_attention_heads: int = 12 | |
intermediate_size: int = 3072 | |
hidden_act: str = "gelu" | |
hidden_dropout_prob: float = 0.1 | |
attention_probs_dropout_prob: float = 0.1 | |
max_position_embeddings: int = 512 | |
type_vocab_size: int = 2 | |
initializer_range: float = 0.02 | |
decoder_intermediate_size: int = 3072 | |
num_decoder_attn_heads: int = 12 | |
num_decoder_layers: int = 12 | |
label_smoothing: float = 0.1 | |
learning_rate: float = 0.05 | |
learning_rate_warmup_steps: int = 20000 | |
optimizer: str = "Adam" | |
adam_beta1: float = 0.9 | |
adam_beta2: float = 0.997 | |
adam_epsilon: float = 1e-09 | |
# predict params | |
beam_size: int = 5 | |
alpha: float = 0.6 | |
initializer_gain: float = 1.0 | |
use_cache: bool = True | |
# input params | |
input_sharding: bool = False | |
input_data_not_padded: bool = False | |
pad_token_id: int = 0 | |
end_token_id: int = 102 | |
start_token_id: int = 101 | |
class NHNetConfig(BERT2BERTConfig): | |
"""High-level configurations for NHNet model. | |
These include parameters that are not directly related to the experiment, | |
e.g. encoder, decoder, prediction, training, etc. | |
""" | |
multi_channel_cross_attention: bool = True | |
passage_list: List[Text] = dataclasses.field( | |
default_factory=lambda: [chr(ord("b") + i) for i in range(5)]) | |
# Initialization method. | |
# If init_from_bert2bert is false, we assume the checkpoint is from BERT | |
# pretraining and only encoder and self-attention variables are initialized. | |
init_from_bert2bert: bool = True | |
UNITTEST_CONFIG = { | |
"attention_probs_dropout_prob": 0.0, | |
"hidden_act": "gelu", | |
"hidden_dropout_prob": 0.0, | |
"hidden_size": 16, | |
"initializer_range": 0.02, | |
"intermediate_size": 32, | |
"max_position_embeddings": 128, | |
"num_attention_heads": 2, | |
"num_hidden_layers": 1, | |
"type_vocab_size": 2, | |
"vocab_size": 30522, | |
"initializer_gain": 1.0, | |
"decoder_intermediate_size": 32, | |
"num_decoder_attn_heads": 2, | |
"num_decoder_layers": 1, | |
"use_cache": True, | |
"input_data_not_padded": False, | |
"pad_token_id": 0, | |
"end_token_id": 102, | |
"start_token_id": 101, | |
} | |