Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Question answering task.""" | |
import logging | |
import dataclasses | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
from official.core import base_task | |
from official.modeling.hyperparams import config_definitions as cfg | |
from official.nlp.bert import input_pipeline | |
from official.nlp.configs import encoders | |
from official.nlp.modeling import models | |
from official.nlp.tasks import utils | |
class QuestionAnsweringConfig(cfg.TaskConfig): | |
"""The model config.""" | |
# At most one of `init_checkpoint` and `hub_module_url` can be specified. | |
init_checkpoint: str = '' | |
hub_module_url: str = '' | |
network: encoders.TransformerEncoderConfig = ( | |
encoders.TransformerEncoderConfig()) | |
train_data: cfg.DataConfig = cfg.DataConfig() | |
validation_data: cfg.DataConfig = cfg.DataConfig() | |
class QuestionAnsweringTask(base_task.Task): | |
"""Task object for question answering. | |
TODO(lehou): Add post-processing. | |
""" | |
def __init__(self, params=cfg.TaskConfig): | |
super(QuestionAnsweringTask, self).__init__(params) | |
if params.hub_module_url and params.init_checkpoint: | |
raise ValueError('At most one of `hub_module_url` and ' | |
'`init_checkpoint` can be specified.') | |
if params.hub_module_url: | |
self._hub_module = hub.load(params.hub_module_url) | |
else: | |
self._hub_module = None | |
def build_model(self): | |
if self._hub_module: | |
encoder_network = utils.get_encoder_from_hub(self._hub_module) | |
else: | |
encoder_network = encoders.instantiate_encoder_from_cfg( | |
self.task_config.network) | |
return models.BertSpanLabeler( | |
network=encoder_network, | |
initializer=tf.keras.initializers.TruncatedNormal( | |
stddev=self.task_config.network.initializer_range)) | |
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor: | |
start_positions = labels['start_positions'] | |
end_positions = labels['end_positions'] | |
start_logits, end_logits = model_outputs | |
start_loss = tf.keras.losses.sparse_categorical_crossentropy( | |
start_positions, | |
tf.cast(start_logits, dtype=tf.float32), | |
from_logits=True) | |
end_loss = tf.keras.losses.sparse_categorical_crossentropy( | |
end_positions, | |
tf.cast(end_logits, dtype=tf.float32), | |
from_logits=True) | |
loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2 | |
return loss | |
def build_inputs(self, params, input_context=None): | |
"""Returns tf.data.Dataset for sentence_prediction task.""" | |
if params.input_path == 'dummy': | |
def dummy_data(_): | |
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32) | |
x = dict( | |
input_word_ids=dummy_ids, | |
input_mask=dummy_ids, | |
input_type_ids=dummy_ids) | |
y = dict( | |
start_positions=tf.constant(0, dtype=tf.int32), | |
end_positions=tf.constant(1, dtype=tf.int32)) | |
return (x, y) | |
dataset = tf.data.Dataset.range(1) | |
dataset = dataset.repeat() | |
dataset = dataset.map( | |
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
return dataset | |
batch_size = input_context.get_per_replica_batch_size( | |
params.global_batch_size) if input_context else params.global_batch_size | |
# TODO(chendouble): add and use nlp.data.question_answering_dataloader. | |
dataset = input_pipeline.create_squad_dataset( | |
params.input_path, | |
params.seq_length, | |
batch_size, | |
is_training=params.is_training, | |
input_pipeline_context=input_context) | |
return dataset | |
def build_metrics(self, training=None): | |
del training | |
# TODO(lehou): a list of metrics doesn't work the same as in compile/fit. | |
metrics = [ | |
tf.keras.metrics.SparseCategoricalAccuracy( | |
name='start_position_accuracy'), | |
tf.keras.metrics.SparseCategoricalAccuracy( | |
name='end_position_accuracy'), | |
] | |
return metrics | |
def process_metrics(self, metrics, labels, model_outputs): | |
metrics = dict([(metric.name, metric) for metric in metrics]) | |
start_logits, end_logits = model_outputs | |
metrics['start_position_accuracy'].update_state( | |
labels['start_positions'], start_logits) | |
metrics['end_position_accuracy'].update_state( | |
labels['end_positions'], end_logits) | |
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs): | |
start_logits, end_logits = model_outputs | |
compiled_metrics.update_state( | |
y_true=labels, # labels has keys 'start_positions' and 'end_positions'. | |
y_pred={'start_positions': start_logits, 'end_positions': end_logits}) | |
def initialize(self, model): | |
"""Load a pretrained checkpoint (if exists) and then train from iter 0.""" | |
ckpt_dir_or_file = self.task_config.init_checkpoint | |
if tf.io.gfile.isdir(ckpt_dir_or_file): | |
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file) | |
if not ckpt_dir_or_file: | |
return | |
ckpt = tf.train.Checkpoint(**model.checkpoint_items) | |
status = ckpt.restore(ckpt_dir_or_file) | |
status.expect_partial().assert_existing_objects_matched() | |
logging.info('finished loading pretrained checkpoint from %s', | |
ckpt_dir_or_file) | |