Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for official.nlp.tasks.question_answering.""" | |
import functools | |
import os | |
import tensorflow as tf | |
from official.nlp.bert import configs | |
from official.nlp.bert import export_tfhub | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
from official.nlp.tasks import question_answering | |
class QuestionAnsweringTaskTest(tf.test.TestCase): | |
def setUp(self): | |
super(QuestionAnsweringTaskTest, self).setUp() | |
self._encoder_config = encoders.TransformerEncoderConfig( | |
vocab_size=30522, num_layers=1) | |
self._train_data_config = bert.QADataConfig( | |
input_path="dummy", seq_length=128, global_batch_size=1) | |
def _run_task(self, config): | |
task = question_answering.QuestionAnsweringTask(config) | |
model = task.build_model() | |
metrics = task.build_metrics() | |
strategy = tf.distribute.get_strategy() | |
dataset = strategy.experimental_distribute_datasets_from_function( | |
functools.partial(task.build_inputs, config.train_data)) | |
iterator = iter(dataset) | |
optimizer = tf.keras.optimizers.SGD(lr=0.1) | |
task.train_step(next(iterator), model, optimizer, metrics=metrics) | |
task.validation_step(next(iterator), model, metrics=metrics) | |
def test_task(self): | |
# Saves a checkpoint. | |
pretrain_cfg = bert.BertPretrainerConfig( | |
encoder=self._encoder_config, | |
num_masked_tokens=20, | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=3, name="next_sentence") | |
]) | |
pretrain_model = bert.instantiate_bertpretrainer_from_cfg(pretrain_cfg) | |
ckpt = tf.train.Checkpoint( | |
model=pretrain_model, **pretrain_model.checkpoint_items) | |
saved_path = ckpt.save(self.get_temp_dir()) | |
config = question_answering.QuestionAnsweringConfig( | |
init_checkpoint=saved_path, | |
network=self._encoder_config, | |
train_data=self._train_data_config) | |
task = question_answering.QuestionAnsweringTask(config) | |
model = task.build_model() | |
metrics = task.build_metrics() | |
dataset = task.build_inputs(config.train_data) | |
iterator = iter(dataset) | |
optimizer = tf.keras.optimizers.SGD(lr=0.1) | |
task.train_step(next(iterator), model, optimizer, metrics=metrics) | |
task.validation_step(next(iterator), model, metrics=metrics) | |
task.initialize(model) | |
def test_task_with_fit(self): | |
config = question_answering.QuestionAnsweringConfig( | |
network=self._encoder_config, | |
train_data=self._train_data_config) | |
task = question_answering.QuestionAnsweringTask(config) | |
model = task.build_model() | |
model = task.compile_model( | |
model, | |
optimizer=tf.keras.optimizers.SGD(lr=0.1), | |
train_step=task.train_step, | |
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")]) | |
dataset = task.build_inputs(config.train_data) | |
logs = model.fit(dataset, epochs=1, steps_per_epoch=2) | |
self.assertIn("loss", logs.history) | |
self.assertIn("start_positions_accuracy", logs.history) | |
self.assertIn("end_positions_accuracy", logs.history) | |
def _export_bert_tfhub(self): | |
bert_config = configs.BertConfig( | |
vocab_size=30522, | |
hidden_size=16, | |
intermediate_size=32, | |
max_position_embeddings=128, | |
num_attention_heads=2, | |
num_hidden_layers=1) | |
_, encoder = export_tfhub.create_bert_model(bert_config) | |
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") | |
checkpoint = tf.train.Checkpoint(model=encoder) | |
checkpoint.save(os.path.join(model_checkpoint_dir, "test")) | |
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) | |
vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt") | |
with tf.io.gfile.GFile(vocab_file, "w") as f: | |
f.write("dummy content") | |
hub_destination = os.path.join(self.get_temp_dir(), "hub") | |
export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path, | |
hub_destination, vocab_file) | |
return hub_destination | |
def test_task_with_hub(self): | |
hub_module_url = self._export_bert_tfhub() | |
config = question_answering.QuestionAnsweringConfig( | |
hub_module_url=hub_module_url, | |
network=self._encoder_config, | |
train_data=self._train_data_config) | |
self._run_task(config) | |
if __name__ == "__main__": | |
tf.test.main() | |