Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Optimizer from addons and learning rate scheduler.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import tensorflow as tf | |
K = tf.keras.backend | |
class LearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): | |
"""Learning rate schedule.""" | |
def __init__(self, initial_learning_rate, hidden_size, warmup_steps): | |
"""Initialize configuration of the learning rate schedule. | |
Args: | |
initial_learning_rate: A float, the initial learning rate. | |
hidden_size: An integer, the model dimension in the hidden layers. | |
warmup_steps: An integer, the number of steps required for linear warmup. | |
""" | |
super(LearningRateSchedule, self).__init__() | |
self.initial_learning_rate = initial_learning_rate | |
self.hidden_size = hidden_size | |
self.warmup_steps = tf.cast(warmup_steps, tf.float32) | |
def __call__(self, global_step): | |
"""Calculate learning rate with linear warmup and rsqrt decay. | |
Args: | |
global_step: An integer, the current global step used for learning rate | |
calculation. | |
Returns: | |
A float, the learning rate needs to be used for current global step. | |
""" | |
with tf.name_scope('learning_rate_schedule'): | |
global_step = tf.cast(global_step, tf.float32) | |
learning_rate = self.initial_learning_rate | |
learning_rate *= (self.hidden_size**-0.5) | |
# Apply linear warmup | |
learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps) | |
# Apply rsqrt decay | |
learning_rate /= tf.sqrt(tf.maximum(global_step, self.warmup_steps)) | |
return learning_rate | |
def get_config(self): | |
"""Get the configuration of the learning rate schedule.""" | |
return { | |
'initial_learning_rate': self.initial_learning_rate, | |
'hidden_size': self.hidden_size, | |
'warmup_steps': self.warmup_steps, | |
} | |
class LearningRateFn(object): | |
"""Creates learning rate function.""" | |
def __init__(self, learning_rate, hidden_size, warmup_steps): | |
self.learning_rate = learning_rate | |
self.hidden_size = hidden_size | |
self.warmup_steps = float(warmup_steps) | |
def __call__(self, global_step): | |
"""Calculate learning rate with linear warmup and rsqrt decay.""" | |
step = float(global_step) | |
learning_rate = self.learning_rate | |
learning_rate *= (self.hidden_size ** -0.5) | |
# Apply linear warmup | |
learning_rate *= np.minimum(1.0, step / self.warmup_steps) | |
# Apply rsqrt decay | |
learning_rate /= np.sqrt(np.maximum(step, self.warmup_steps)) | |
return learning_rate | |
class LearningRateScheduler(tf.keras.callbacks.Callback): | |
"""Keras callback to schedule learning rate. | |
TODO(tianlin): Refactor this scheduler and LearningRateBatchScheduler in | |
official/resnet/keras/keras_common.py. | |
""" | |
def __init__(self, schedule, init_steps=None, verbose=False): | |
super(LearningRateScheduler, self).__init__() | |
self.schedule = schedule | |
self.verbose = verbose | |
if init_steps is None: | |
init_steps = 0.0 | |
self.steps = float(init_steps) # Total steps during training. | |
def on_epoch_begin(self, epoch, logs=None): | |
if not hasattr(self.model.optimizer, 'lr'): | |
raise ValueError('Optimizer must have a "lr" attribute.') | |
if not hasattr(self.model.optimizer, 'iterations'): | |
raise ValueError('Optimizer must have a "iterations" attribute.') | |
def on_train_batch_begin(self, batch, logs=None): | |
"""Adjusts learning rate for each train batch.""" | |
if self.verbose > 0: | |
iterations = K.get_value(self.model.optimizer.iterations) | |
print('Original iteration %d' % iterations) | |
self.steps += 1.0 | |
try: # new API | |
lr = float(K.get_value(self.model.optimizer.lr)) | |
lr = self.schedule(self.steps, lr) | |
except TypeError: # Support for old API for backward compatibility | |
lr = self.schedule(self.steps) | |
if not isinstance(lr, (float, np.float32, np.float64)): | |
raise ValueError('The output of the "schedule" function ' | |
'should be float.') | |
K.set_value(self.model.optimizer.lr, lr) | |
K.set_value(self.model.optimizer.iterations, self.steps) | |
if self.verbose > 0: | |
print('Batch %05d Step %05d: LearningRateScheduler setting learning ' | |
'rate to %s.' % (batch + 1, self.steps, lr)) | |
def on_epoch_end(self, epoch, logs=None): | |
logs = logs or {} | |
logs['lr'] = K.get_value(self.model.optimizer.lr) | |
logs['steps'] = self.steps | |