NCTC / models /official /recommendation /data_preprocessing.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
10.5 kB
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocess dataset and construct any necessary artifacts."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import os
import pickle
import time
import timeit
# pylint: disable=wrong-import-order
from absl import logging
import numpy as np
import pandas as pd
import tensorflow as tf
import typing
from typing import Dict, Text, Tuple
# pylint: enable=wrong-import-order
from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import movielens
_EXPECTED_CACHE_KEYS = (
rconst.TRAIN_USER_KEY, rconst.TRAIN_ITEM_KEY, rconst.EVAL_USER_KEY,
rconst.EVAL_ITEM_KEY, rconst.USER_MAP, rconst.ITEM_MAP)
def read_dataframe(
raw_rating_path: Text
) -> Tuple[Dict[int, int], Dict[int, int], pd.DataFrame]:
"""Read in data CSV, and output DataFrame for downstream processing.
This function reads in the raw CSV of positive items, and performs three
preprocessing transformations:
1) Filter out all users who have not rated at least a certain number
of items. (Typically 20 items)
2) Zero index the users and items such that the largest user_id is
`num_users - 1` and the largest item_id is `num_items - 1`
3) Sort the dataframe by user_id, with timestamp as a secondary sort key.
This allows the dataframe to be sliced by user in-place, and for the last
item to be selected simply by calling the `-1` index of a user's slice.
Args:
raw_rating_path: The path to the CSV which contains the raw dataset.
Returns:
A dict mapping raw user IDs to regularized user IDs, a dict mapping raw
item IDs to regularized item IDs, and a filtered, zero-index remapped,
sorted dataframe.
"""
with tf.io.gfile.GFile(raw_rating_path) as f:
df = pd.read_csv(f)
# Get the info of users who have more than 20 ratings on items
grouped = df.groupby(movielens.USER_COLUMN)
df = grouped.filter(
lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame
original_users = df[movielens.USER_COLUMN].unique()
original_items = df[movielens.ITEM_COLUMN].unique()
# Map the ids of user and item to 0 based index for following processing
logging.info("Generating user_map and item_map...")
user_map = {user: index for index, user in enumerate(original_users)}
item_map = {item: index for index, item in enumerate(original_items)}
df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply(
lambda user: user_map[user])
df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply(
lambda item: item_map[item])
num_users = len(original_users)
num_items = len(original_items)
assert num_users <= np.iinfo(rconst.USER_DTYPE).max
assert num_items <= np.iinfo(rconst.ITEM_DTYPE).max
assert df[movielens.USER_COLUMN].max() == num_users - 1
assert df[movielens.ITEM_COLUMN].max() == num_items - 1
# This sort is used to shard the dataframe by user, and later to select
# the last item for a user to be used in validation.
logging.info("Sorting by user, timestamp...")
# This sort is equivalent to
# df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
# inplace=True)
# except that the order of items with the same user and timestamp are
# sometimes different. For some reason, this sort results in a better
# hit-rate during evaluation, matching the performance of the MLPerf
# reference implementation.
df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True)
df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
inplace=True,
kind="mergesort")
# The dataframe does not reconstruct indices in the sort or filter steps.
return user_map, item_map, df.reset_index()
def _filter_index_sort(raw_rating_path: Text,
cache_path: Text) -> Tuple[pd.DataFrame, bool]:
"""Read in data CSV, and output structured data.
This function reads in the raw CSV of positive items, and performs three
preprocessing transformations:
1) Filter out all users who have not rated at least a certain number
of items. (Typically 20 items)
2) Zero index the users and items such that the largest user_id is
`num_users - 1` and the largest item_id is `num_items - 1`
3) Sort the dataframe by user_id, with timestamp as a secondary sort key.
This allows the dataframe to be sliced by user in-place, and for the last
item to be selected simply by calling the `-1` index of a user's slice.
While all of these transformations are performed by Pandas (and are therefore
single-threaded), they only take ~2 minutes, and the overhead to apply a
MapReduce pattern to parallel process the dataset adds significant complexity
for no computational gain. For a larger dataset parallelizing this
preprocessing could yield speedups. (Also, this preprocessing step is only
performed once for an entire run.
Args:
raw_rating_path: The path to the CSV which contains the raw dataset.
cache_path: The path to the file where results of this function are saved.
Returns:
A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user
IDs to regularized user IDs, and a dict mapping raw item IDs to regularized
item IDs.
"""
valid_cache = tf.io.gfile.exists(cache_path)
if valid_cache:
with tf.io.gfile.GFile(cache_path, "rb") as f:
cached_data = pickle.load(f)
# (nnigania)disabled this check as the dataset is not expected to change
# cache_age = time.time() - cached_data.get("create_time", 0)
# if cache_age > rconst.CACHE_INVALIDATION_SEC:
# valid_cache = False
for key in _EXPECTED_CACHE_KEYS:
if key not in cached_data:
valid_cache = False
if not valid_cache:
logging.info("Removing stale raw data cache file.")
tf.io.gfile.remove(cache_path)
if valid_cache:
data = cached_data
else:
user_map, item_map, df = read_dataframe(raw_rating_path)
grouped = df.groupby(movielens.USER_COLUMN, group_keys=False)
eval_df, train_df = grouped.tail(1), grouped.apply(lambda x: x.iloc[:-1])
data = {
rconst.TRAIN_USER_KEY: train_df[movielens.USER_COLUMN]
.values.astype(rconst.USER_DTYPE),
rconst.TRAIN_ITEM_KEY: train_df[movielens.ITEM_COLUMN]
.values.astype(rconst.ITEM_DTYPE),
rconst.EVAL_USER_KEY: eval_df[movielens.USER_COLUMN]
.values.astype(rconst.USER_DTYPE),
rconst.EVAL_ITEM_KEY: eval_df[movielens.ITEM_COLUMN]
.values.astype(rconst.ITEM_DTYPE),
rconst.USER_MAP: user_map,
rconst.ITEM_MAP: item_map,
"create_time": time.time(),
}
logging.info("Writing raw data cache.")
with tf.io.gfile.GFile(cache_path, "wb") as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
# TODO(robieta): MLPerf cache clear.
return data, valid_cache
def instantiate_pipeline(dataset,
data_dir,
params,
constructor_type=None,
deterministic=False,
epoch_dir=None,
generate_data_offline=False):
# type: (str, str, dict, typing.Optional[str], bool, typing.Optional[str], bool) -> (int, int, data_pipeline.BaseDataConstructor)
"""Load and digest data CSV into a usable form.
Args:
dataset: The name of the dataset to be used.
data_dir: The root directory of the dataset.
params: dict of parameters for the run.
constructor_type: The name of the constructor subclass that should be used
for the input pipeline.
deterministic: Tell the data constructor to produce deterministically.
epoch_dir: Directory in which to store the training epochs.
generate_data_offline: Boolean, whether current pipeline is done offline
or while training.
"""
logging.info("Beginning data preprocessing.")
st = timeit.default_timer()
raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE)
cache_path = os.path.join(data_dir, dataset, rconst.RAW_CACHE_FILE)
raw_data, _ = _filter_index_sort(raw_rating_path, cache_path)
user_map, item_map = raw_data["user_map"], raw_data["item_map"]
num_users, num_items = movielens.DATASET_TO_NUM_USERS_AND_ITEMS[dataset]
if num_users != len(user_map):
raise ValueError("Expected to find {} users, but found {}".format(
num_users, len(user_map)))
if num_items != len(item_map):
raise ValueError("Expected to find {} items, but found {}".format(
num_items, len(item_map)))
producer = data_pipeline.get_constructor(constructor_type or "materialized")(
maximum_number_epochs=params["train_epochs"],
num_users=num_users,
num_items=num_items,
user_map=user_map,
item_map=item_map,
train_pos_users=raw_data[rconst.TRAIN_USER_KEY],
train_pos_items=raw_data[rconst.TRAIN_ITEM_KEY],
train_batch_size=params["batch_size"],
batches_per_train_step=params["batches_per_step"],
num_train_negatives=params["num_neg"],
eval_pos_users=raw_data[rconst.EVAL_USER_KEY],
eval_pos_items=raw_data[rconst.EVAL_ITEM_KEY],
eval_batch_size=params["eval_batch_size"],
batches_per_eval_step=params["batches_per_step"],
stream_files=params["stream_files"],
deterministic=deterministic,
epoch_dir=epoch_dir,
create_data_offline=generate_data_offline)
run_time = timeit.default_timer() - st
logging.info("Data preprocessing complete. Time: {:.1f} sec."
.format(run_time))
print(producer)
return num_users, num_items, producer