NCTC / models /official /utils /hyperparams_flags.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
4.85 kB
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common flags for importing hyperparameters."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
from absl import flags
from official.utils.flags import core as flags_core
FLAGS = flags.FLAGS
def define_gin_flags():
"""Define common gin configurable flags."""
flags.DEFINE_multi_string('gin_file', None,
'List of paths to the config files.')
flags.DEFINE_multi_string(
'gin_param', None, 'Newline separated list of Gin parameter bindings.')
def define_common_hparams_flags():
"""Define the common flags across models."""
flags.DEFINE_string(
'model_dir',
default=None,
help=('The directory where the model and training/evaluation summaries'
'are stored.'))
flags.DEFINE_integer(
'train_batch_size', default=None, help='Batch size for training.')
flags.DEFINE_integer(
'eval_batch_size', default=None, help='Batch size for evaluation.')
flags.DEFINE_string(
'precision',
default=None,
help=('Precision to use; one of: {bfloat16, float32}'))
flags.DEFINE_string(
'config_file',
default=None,
help=('A YAML file which specifies overrides. Note that this file can be '
'used as an override template to override the default parameters '
'specified in Python. If the same parameter is specified in both '
'`--config_file` and `--params_override`, the one in '
'`--params_override` will be used finally.'))
flags.DEFINE_string(
'params_override',
default=None,
help=('a YAML/JSON string or a YAML file which specifies additional '
'overrides over the default parameters and those specified in '
'`--config_file`. Note that this is supposed to be used only to '
'override the model parameters, but not the parameters like TPU '
'specific flags. One canonical use case of `--config_file` and '
'`--params_override` is users first define a template config file '
'using `--config_file`, then use `--params_override` to adjust the '
'minimal set of tuning parameters, for example setting up different'
' `train_batch_size`. '
'The final override order of parameters: default_model_params --> '
'params from config_file --> params in params_override.'
'See also the help message of `--config_file`.'))
flags.DEFINE_integer('save_checkpoint_freq', None,
'Number of steps to save checkpoint.')
def initialize_common_flags():
"""Define the common flags across models."""
define_common_hparams_flags()
flags_core.define_device(tpu=True)
flags_core.define_base(
num_gpu=True, model_dir=False, data_dir=False, batch_size=False)
flags_core.define_distribution(worker_hosts=True, task_index=True)
flags_core.define_performance(all_reduce_alg=True, num_packs=True)
# Reset the default value of num_gpus to zero.
FLAGS.num_gpus = 0
flags.DEFINE_string(
'strategy_type', 'mirrored', 'Type of distribute strategy.'
'One of mirrored, tpu and multiworker.')
def strategy_flags_dict():
"""Returns TPU and/or GPU related flags in a dictionary."""
return {
'distribution_strategy': FLAGS.strategy_type,
# TPUStrategy related flags.
'tpu': FLAGS.tpu,
# MultiWorkerMirroredStrategy related flags.
'all_reduce_alg': FLAGS.all_reduce_alg,
'worker_hosts': FLAGS.worker_hosts,
'task_index': FLAGS.task_index,
# MirroredStrategy and OneDeviceStrategy
'num_gpus': FLAGS.num_gpus,
'num_packs': FLAGS.num_packs,
}
def hparam_flags_dict():
"""Returns model params related flags in a dictionary."""
return {
'data_dir': FLAGS.data_dir,
'model_dir': FLAGS.model_dir,
'train_batch_size': FLAGS.train_batch_size,
'eval_batch_size': FLAGS.eval_batch_size,
'precision': FLAGS.precision,
'config_file': FLAGS.config_file,
'params_override': FLAGS.params_override,
}