Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Common flags for importing hyperparameters.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
# from __future__ import google_type_annotations | |
from __future__ import print_function | |
from absl import flags | |
from official.utils.flags import core as flags_core | |
FLAGS = flags.FLAGS | |
def define_gin_flags(): | |
"""Define common gin configurable flags.""" | |
flags.DEFINE_multi_string('gin_file', None, | |
'List of paths to the config files.') | |
flags.DEFINE_multi_string( | |
'gin_param', None, 'Newline separated list of Gin parameter bindings.') | |
def define_common_hparams_flags(): | |
"""Define the common flags across models.""" | |
flags.DEFINE_string( | |
'model_dir', | |
default=None, | |
help=('The directory where the model and training/evaluation summaries' | |
'are stored.')) | |
flags.DEFINE_integer( | |
'train_batch_size', default=None, help='Batch size for training.') | |
flags.DEFINE_integer( | |
'eval_batch_size', default=None, help='Batch size for evaluation.') | |
flags.DEFINE_string( | |
'precision', | |
default=None, | |
help=('Precision to use; one of: {bfloat16, float32}')) | |
flags.DEFINE_string( | |
'config_file', | |
default=None, | |
help=('A YAML file which specifies overrides. Note that this file can be ' | |
'used as an override template to override the default parameters ' | |
'specified in Python. If the same parameter is specified in both ' | |
'`--config_file` and `--params_override`, the one in ' | |
'`--params_override` will be used finally.')) | |
flags.DEFINE_string( | |
'params_override', | |
default=None, | |
help=('a YAML/JSON string or a YAML file which specifies additional ' | |
'overrides over the default parameters and those specified in ' | |
'`--config_file`. Note that this is supposed to be used only to ' | |
'override the model parameters, but not the parameters like TPU ' | |
'specific flags. One canonical use case of `--config_file` and ' | |
'`--params_override` is users first define a template config file ' | |
'using `--config_file`, then use `--params_override` to adjust the ' | |
'minimal set of tuning parameters, for example setting up different' | |
' `train_batch_size`. ' | |
'The final override order of parameters: default_model_params --> ' | |
'params from config_file --> params in params_override.' | |
'See also the help message of `--config_file`.')) | |
flags.DEFINE_integer('save_checkpoint_freq', None, | |
'Number of steps to save checkpoint.') | |
def initialize_common_flags(): | |
"""Define the common flags across models.""" | |
define_common_hparams_flags() | |
flags_core.define_device(tpu=True) | |
flags_core.define_base( | |
num_gpu=True, model_dir=False, data_dir=False, batch_size=False) | |
flags_core.define_distribution(worker_hosts=True, task_index=True) | |
flags_core.define_performance(all_reduce_alg=True, num_packs=True) | |
# Reset the default value of num_gpus to zero. | |
FLAGS.num_gpus = 0 | |
flags.DEFINE_string( | |
'strategy_type', 'mirrored', 'Type of distribute strategy.' | |
'One of mirrored, tpu and multiworker.') | |
def strategy_flags_dict(): | |
"""Returns TPU and/or GPU related flags in a dictionary.""" | |
return { | |
'distribution_strategy': FLAGS.strategy_type, | |
# TPUStrategy related flags. | |
'tpu': FLAGS.tpu, | |
# MultiWorkerMirroredStrategy related flags. | |
'all_reduce_alg': FLAGS.all_reduce_alg, | |
'worker_hosts': FLAGS.worker_hosts, | |
'task_index': FLAGS.task_index, | |
# MirroredStrategy and OneDeviceStrategy | |
'num_gpus': FLAGS.num_gpus, | |
'num_packs': FLAGS.num_packs, | |
} | |
def hparam_flags_dict(): | |
"""Returns model params related flags in a dictionary.""" | |
return { | |
'data_dir': FLAGS.data_dir, | |
'model_dir': FLAGS.model_dir, | |
'train_batch_size': FLAGS.train_batch_size, | |
'eval_batch_size': FLAGS.eval_batch_size, | |
'precision': FLAGS.precision, | |
'config_file': FLAGS.config_file, | |
'params_override': FLAGS.params_override, | |
} | |