Spaces:
Running
Running
import numpy as np | |
import tensorflow as tf | |
class Autoencoder(object): | |
def __init__(self, n_layers, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer()): | |
self.n_layers = n_layers | |
self.transfer = transfer_function | |
network_weights = self._initialize_weights() | |
self.weights = network_weights | |
# model | |
self.x = tf.placeholder(tf.float32, [None, self.n_layers[0]]) | |
self.hidden_encode = [] | |
h = self.x | |
for layer in range(len(self.n_layers)-1): | |
h = self.transfer( | |
tf.add(tf.matmul(h, self.weights['encode'][layer]['w']), | |
self.weights['encode'][layer]['b'])) | |
self.hidden_encode.append(h) | |
self.hidden_recon = [] | |
for layer in range(len(self.n_layers)-1): | |
h = self.transfer( | |
tf.add(tf.matmul(h, self.weights['recon'][layer]['w']), | |
self.weights['recon'][layer]['b'])) | |
self.hidden_recon.append(h) | |
self.reconstruction = self.hidden_recon[-1] | |
# cost | |
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)) | |
self.optimizer = optimizer.minimize(self.cost) | |
init = tf.global_variables_initializer() | |
self.sess = tf.Session() | |
self.sess.run(init) | |
def _initialize_weights(self): | |
all_weights = dict() | |
initializer = tf.contrib.layers.xavier_initializer() | |
# Encoding network weights | |
encoder_weights = [] | |
for layer in range(len(self.n_layers)-1): | |
w = tf.Variable( | |
initializer((self.n_layers[layer], self.n_layers[layer + 1]), | |
dtype=tf.float32)) | |
b = tf.Variable( | |
tf.zeros([self.n_layers[layer + 1]], dtype=tf.float32)) | |
encoder_weights.append({'w': w, 'b': b}) | |
# Recon network weights | |
recon_weights = [] | |
for layer in range(len(self.n_layers)-1, 0, -1): | |
w = tf.Variable( | |
initializer((self.n_layers[layer], self.n_layers[layer - 1]), | |
dtype=tf.float32)) | |
b = tf.Variable( | |
tf.zeros([self.n_layers[layer - 1]], dtype=tf.float32)) | |
recon_weights.append({'w': w, 'b': b}) | |
all_weights['encode'] = encoder_weights | |
all_weights['recon'] = recon_weights | |
return all_weights | |
def partial_fit(self, X): | |
cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X}) | |
return cost | |
def calc_total_cost(self, X): | |
return self.sess.run(self.cost, feed_dict={self.x: X}) | |
def transform(self, X): | |
return self.sess.run(self.hidden_encode[-1], feed_dict={self.x: X}) | |
def generate(self, hidden=None): | |
if hidden is None: | |
hidden = np.random.normal(size=self.weights['encode'][-1]['b']) | |
return self.sess.run(self.reconstruction, feed_dict={self.hidden_encode[-1]: hidden}) | |
def reconstruct(self, X): | |
return self.sess.run(self.reconstruction, feed_dict={self.x: X}) | |
def getWeights(self): | |
raise NotImplementedError | |
return self.sess.run(self.weights) | |
def getBiases(self): | |
raise NotImplementedError | |
return self.sess.run(self.weights) | |