Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""A script to run training for sequential latent variable models. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
from fivo import ghmm_runners | |
from fivo import runners | |
# Shared flags. | |
tf.app.flags.DEFINE_enum("mode", "train", | |
["train", "eval", "sample"], | |
"The mode of the binary.") | |
tf.app.flags.DEFINE_enum("model", "vrnn", | |
["vrnn", "ghmm", "srnn"], | |
"Model choice.") | |
tf.app.flags.DEFINE_integer("latent_size", 64, | |
"The size of the latent state of the model.") | |
tf.app.flags.DEFINE_enum("dataset_type", "pianoroll", | |
["pianoroll", "speech", "pose"], | |
"The type of dataset.") | |
tf.app.flags.DEFINE_string("dataset_path", "", | |
"Path to load the dataset from.") | |
tf.app.flags.DEFINE_integer("data_dimension", None, | |
"The dimension of each vector in the data sequence. " | |
"Defaults to 88 for pianoroll datasets and 200 for speech " | |
"datasets. Should not need to be changed except for " | |
"testing.") | |
tf.app.flags.DEFINE_integer("batch_size", 4, | |
"Batch size.") | |
tf.app.flags.DEFINE_integer("num_samples", 4, | |
"The number of samples (or particles) for multisample " | |
"algorithms.") | |
tf.app.flags.DEFINE_string("logdir", "/tmp/smc_vi", | |
"The directory to keep checkpoints and summaries in.") | |
tf.app.flags.DEFINE_integer("random_seed", None, | |
"A random seed for seeding the TensorFlow graph.") | |
tf.app.flags.DEFINE_integer("parallel_iterations", 30, | |
"The number of parallel iterations to use for the while " | |
"loop that computes the bounds.") | |
# Training flags. | |
tf.app.flags.DEFINE_enum("bound", "fivo", | |
["elbo", "iwae", "fivo", "fivo-aux"], | |
"The bound to optimize.") | |
tf.app.flags.DEFINE_boolean("normalize_by_seq_len", True, | |
"If true, normalize the loss by the number of timesteps " | |
"per sequence.") | |
tf.app.flags.DEFINE_float("learning_rate", 0.0002, | |
"The learning rate for ADAM.") | |
tf.app.flags.DEFINE_integer("max_steps", int(1e9), | |
"The number of gradient update steps to train for.") | |
tf.app.flags.DEFINE_integer("summarize_every", 50, | |
"The number of steps between summaries.") | |
tf.app.flags.DEFINE_enum("resampling_type", "multinomial", | |
["multinomial", "relaxed"], | |
"The resampling strategy to use for training.") | |
tf.app.flags.DEFINE_float("relaxed_resampling_temperature", 0.5, | |
"The relaxation temperature for relaxed resampling.") | |
tf.app.flags.DEFINE_enum("proposal_type", "filtering", | |
["prior", "filtering", "smoothing", | |
"true-filtering", "true-smoothing"], | |
"The type of proposal to use. true-filtering and true-smoothing " | |
"are only available for the GHMM. The specific implementation " | |
"of each proposal type is left to model-writers.") | |
# Distributed training flags. | |
tf.app.flags.DEFINE_string("master", "", | |
"The BNS name of the TensorFlow master to use.") | |
tf.app.flags.DEFINE_integer("task", 0, | |
"Task id of the replica running the training.") | |
tf.app.flags.DEFINE_integer("ps_tasks", 0, | |
"Number of tasks in the ps job. If 0 no ps job is used.") | |
tf.app.flags.DEFINE_boolean("stagger_workers", True, | |
"If true, bring one worker online every 1000 steps.") | |
# Evaluation flags. | |
tf.app.flags.DEFINE_enum("split", "train", | |
["train", "test", "valid"], | |
"Split to evaluate the model on.") | |
# Sampling flags. | |
tf.app.flags.DEFINE_integer("sample_length", 50, | |
"The number of timesteps to sample for.") | |
tf.app.flags.DEFINE_integer("prefix_length", 25, | |
"The number of timesteps to condition the model on " | |
"before sampling.") | |
tf.app.flags.DEFINE_string("sample_out_dir", None, | |
"The directory to write the samples to. " | |
"Defaults to logdir.") | |
# GHMM flags. | |
tf.app.flags.DEFINE_float("variance", 0.1, | |
"The variance of the ghmm.") | |
tf.app.flags.DEFINE_integer("num_timesteps", 5, | |
"The number of timesteps to run the gmp for.") | |
FLAGS = tf.app.flags.FLAGS | |
PIANOROLL_DEFAULT_DATA_DIMENSION = 88 | |
SPEECH_DEFAULT_DATA_DIMENSION = 200 | |
def main(unused_argv): | |
tf.logging.set_verbosity(tf.logging.INFO) | |
if FLAGS.model in ["vrnn", "srnn"]: | |
if FLAGS.data_dimension is None: | |
if FLAGS.dataset_type == "pianoroll": | |
FLAGS.data_dimension = PIANOROLL_DEFAULT_DATA_DIMENSION | |
elif FLAGS.dataset_type == "speech": | |
FLAGS.data_dimension = SPEECH_DEFAULT_DATA_DIMENSION | |
if FLAGS.mode == "train": | |
runners.run_train(FLAGS) | |
elif FLAGS.mode == "eval": | |
runners.run_eval(FLAGS) | |
elif FLAGS.mode == "sample": | |
runners.run_sample(FLAGS) | |
elif FLAGS.model == "ghmm": | |
if FLAGS.mode == "train": | |
ghmm_runners.run_train(FLAGS) | |
elif FLAGS.mode == "eval": | |
ghmm_runners.run_eval(FLAGS) | |
if __name__ == "__main__": | |
tf.app.run(main) | |