NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
13.4 kB
# Copyright 2018 The TensorFlow Global Objectives Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for global objectives util functions."""
# Dependency imports
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from global_objectives import util
def weighted_sigmoid_cross_entropy(targets, logits, weight):
return (weight * targets * np.log(1.0 + np.exp(-logits)) + (
(1.0 - targets) * np.log(1.0 + 1.0 / np.exp(-logits))))
def hinge_loss(labels, logits):
# Mostly copied from tensorflow.python.ops.losses but with loss per datapoint.
labels = tf.to_float(labels)
all_ones = tf.ones_like(labels)
labels = tf.subtract(2 * labels, all_ones)
return tf.nn.relu(tf.subtract(all_ones, tf.multiply(labels, logits)))
class WeightedSigmoidCrossEntropyTest(parameterized.TestCase, tf.test.TestCase):
def testTrivialCompatibilityWithSigmoidCrossEntropy(self):
"""Tests compatibility with unweighted function with weight 1.0."""
x_shape = [300, 10]
targets = np.random.random_sample(x_shape).astype(np.float32)
logits = np.random.randn(*x_shape).astype(np.float32)
weighted_loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets,
logits)
expected_loss = (
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
logits, targets))
with self.test_session():
self.assertAllClose(expected_loss.eval(),
weighted_loss.eval(),
atol=0.000001)
def testNonTrivialCompatibilityWithSigmoidCrossEntropy(self):
"""Tests use of an arbitrary weight (4.12)."""
x_shape = [300, 10]
targets = np.random.random_sample(x_shape).astype(np.float32)
logits = np.random.randn(*x_shape).astype(np.float32)
weight = 4.12
weighted_loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets,
logits,
weight,
weight)
expected_loss = (
weight *
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
logits, targets))
with self.test_session():
self.assertAllClose(expected_loss.eval(),
weighted_loss.eval(),
atol=0.000001)
def testDifferentSizeWeightedSigmoidCrossEntropy(self):
"""Tests correctness on 3D tensors.
Tests that the function works as expected when logits is a 3D tensor and
targets is a 2D tensor.
"""
targets_shape = [30, 4]
logits_shape = [targets_shape[0], targets_shape[1], 3]
targets = np.random.random_sample(targets_shape).astype(np.float32)
logits = np.random.randn(*logits_shape).astype(np.float32)
weight_vector = [2.0, 3.0, 13.0]
loss = util.weighted_sigmoid_cross_entropy_with_logits(targets,
logits,
weight_vector)
with self.test_session():
loss = loss.eval()
for i in range(0, len(weight_vector)):
expected = weighted_sigmoid_cross_entropy(targets, logits[:, :, i],
weight_vector[i])
self.assertAllClose(loss[:, :, i], expected, atol=0.000001)
@parameterized.parameters((300, 10, 0.3), (20, 4, 2.0), (30, 4, 3.9))
def testWeightedSigmoidCrossEntropy(self, batch_size, num_labels, weight):
"""Tests thats the tf and numpy functions agree on many instances."""
x_shape = [batch_size, num_labels]
targets = np.random.random_sample(x_shape).astype(np.float32)
logits = np.random.randn(*x_shape).astype(np.float32)
with self.test_session():
loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets,
logits,
weight,
1.0,
name='weighted-loss')
expected = weighted_sigmoid_cross_entropy(targets, logits, weight)
self.assertAllClose(expected, loss.eval(), atol=0.000001)
def testGradients(self):
"""Tests that weighted loss gradients behave as expected."""
dummy_tensor = tf.constant(1.0)
positives_shape = [10, 1]
positives_logits = dummy_tensor * tf.Variable(
tf.random_normal(positives_shape) + 1.0)
positives_targets = tf.ones(positives_shape)
positives_weight = 4.6
positives_loss = (
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
positives_logits, positives_targets) * positives_weight)
negatives_shape = [190, 1]
negatives_logits = dummy_tensor * tf.Variable(
tf.random_normal(negatives_shape))
negatives_targets = tf.zeros(negatives_shape)
negatives_weight = 0.9
negatives_loss = (
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
negatives_logits, negatives_targets) * negatives_weight)
all_logits = tf.concat([positives_logits, negatives_logits], 0)
all_targets = tf.concat([positives_targets, negatives_targets], 0)
weighted_loss = tf.reduce_sum(
util.weighted_sigmoid_cross_entropy_with_logits(
all_targets, all_logits, positives_weight, negatives_weight))
weighted_gradients = tf.gradients(weighted_loss, dummy_tensor)
expected_loss = tf.add(
tf.reduce_sum(positives_loss),
tf.reduce_sum(negatives_loss))
expected_gradients = tf.gradients(expected_loss, dummy_tensor)
with tf.Session() as session:
tf.global_variables_initializer().run()
grad, expected_grad = session.run(
[weighted_gradients, expected_gradients])
self.assertAllClose(grad, expected_grad)
def testDtypeFlexibility(self):
"""Tests the loss on inputs of varying data types."""
shape = [20, 3]
logits = np.random.randn(*shape)
targets = tf.truncated_normal(shape)
positive_weights = tf.constant(3, dtype=tf.int64)
negative_weights = 1
loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets, logits, positive_weights, negative_weights)
with self.test_session():
self.assertEqual(loss.eval().dtype, np.float)
class WeightedHingeLossTest(tf.test.TestCase):
def testTrivialCompatibilityWithHinge(self):
# Tests compatibility with unweighted hinge loss.
x_shape = [55, 10]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.3))
weighted_loss = util.weighted_hinge_loss(targets, logits)
expected_loss = hinge_loss(targets, logits)
with self.test_session():
self.assertAllClose(expected_loss.eval(), weighted_loss.eval())
def testLessTrivialCompatibilityWithHinge(self):
# Tests compatibility with a constant weight for positives and negatives.
x_shape = [56, 11]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.7))
weight = 1.0 + 1.0/2 + 1.0/3 + 1.0/4 + 1.0/5 + 1.0/6 + 1.0/7
weighted_loss = util.weighted_hinge_loss(targets, logits, weight, weight)
expected_loss = hinge_loss(targets, logits) * weight
with self.test_session():
self.assertAllClose(expected_loss.eval(), weighted_loss.eval())
def testNontrivialCompatibilityWithHinge(self):
# Tests compatibility with different positive and negative weights.
x_shape = [23, 8]
logits_positives = tf.constant(np.random.randn(*x_shape).astype(np.float32))
logits_negatives = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets_positives = tf.ones(x_shape)
targets_negatives = tf.zeros(x_shape)
logits = tf.concat([logits_positives, logits_negatives], 0)
targets = tf.concat([targets_positives, targets_negatives], 0)
raw_loss = util.weighted_hinge_loss(targets,
logits,
positive_weights=3.4,
negative_weights=1.2)
loss = tf.reduce_sum(raw_loss, 0)
positives_hinge = hinge_loss(targets_positives, logits_positives)
negatives_hinge = hinge_loss(targets_negatives, logits_negatives)
expected = tf.add(tf.reduce_sum(3.4 * positives_hinge, 0),
tf.reduce_sum(1.2 * negatives_hinge, 0))
with self.test_session():
self.assertAllClose(loss.eval(), expected.eval())
def test3DLogitsAndTargets(self):
# Tests correctness when logits is 3D and targets is 2D.
targets_shape = [30, 4]
logits_shape = [targets_shape[0], targets_shape[1], 3]
targets = tf.to_float(
tf.constant(np.random.random_sample(targets_shape) > 0.7))
logits = tf.constant(np.random.randn(*logits_shape).astype(np.float32))
weight_vector = [1.0, 1.0, 1.0]
loss = util.weighted_hinge_loss(targets, logits, weight_vector)
with self.test_session():
loss_value = loss.eval()
for i in range(len(weight_vector)):
expected = hinge_loss(targets, logits[:, :, i]).eval()
self.assertAllClose(loss_value[:, :, i], expected)
class BuildLabelPriorsTest(tf.test.TestCase):
def testLabelPriorConsistency(self):
# Checks that, with zero pseudocounts, the returned label priors reproduce
# label frequencies in the batch.
batch_shape = [4, 10]
labels = tf.Variable(
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.678)))
label_priors_update = util.build_label_priors(
labels=labels, positive_pseudocount=0, negative_pseudocount=0)
expected_priors = tf.reduce_mean(labels, 0)
with self.test_session():
tf.global_variables_initializer().run()
self.assertAllClose(label_priors_update.eval(), expected_priors.eval())
def testLabelPriorsUpdate(self):
# Checks that the update of label priors behaves as expected.
batch_shape = [1, 5]
labels = tf.Variable(
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4)))
label_priors_update = util.build_label_priors(labels)
label_sum = np.ones(shape=batch_shape)
weight_sum = 2.0 * np.ones(shape=batch_shape)
with self.test_session() as session:
tf.global_variables_initializer().run()
for _ in range(3):
label_sum += labels.eval()
weight_sum += np.ones(shape=batch_shape)
expected_posteriors = label_sum / weight_sum
label_priors = label_priors_update.eval().reshape(batch_shape)
self.assertAllClose(label_priors, expected_posteriors)
# Re-initialize labels to get a new random sample.
session.run(labels.initializer)
def testLabelPriorsUpdateWithWeights(self):
# Checks the update of label priors with per-example weights.
batch_size = 6
num_labels = 5
batch_shape = [batch_size, num_labels]
labels = tf.Variable(
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6)))
weights = tf.Variable(tf.random_uniform(batch_shape) * 6.2)
update_op = util.build_label_priors(labels, weights=weights)
expected_weighted_label_counts = 1.0 + tf.reduce_sum(weights * labels, 0)
expected_weight_sum = 2.0 + tf.reduce_sum(weights, 0)
expected_label_posteriors = tf.divide(expected_weighted_label_counts,
expected_weight_sum)
with self.test_session() as session:
tf.global_variables_initializer().run()
updated_priors, expected_posteriors = session.run(
[update_op, expected_label_posteriors])
self.assertAllClose(updated_priors, expected_posteriors)
class WeightedSurrogateLossTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
('hinge', util.weighted_hinge_loss),
('xent', util.weighted_sigmoid_cross_entropy_with_logits))
def testCompatibilityLoss(self, loss_name, loss_fn):
x_shape = [28, 4]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.5))
positive_weights = 0.66
negative_weights = 11.1
expected_loss = loss_fn(
targets,
logits,
positive_weights=positive_weights,
negative_weights=negative_weights)
computed_loss = util.weighted_surrogate_loss(
targets,
logits,
loss_name,
positive_weights=positive_weights,
negative_weights=negative_weights)
with self.test_session():
self.assertAllClose(expected_loss.eval(), computed_loss.eval())
def testSurrogatgeError(self):
x_shape = [7, 3]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.5))
with self.assertRaises(ValueError):
util.weighted_surrogate_loss(logits, targets, 'bug')
if __name__ == '__main__':
tf.test.main()