Spaces:
Running
Running
#!/usr/bin/env python | |
# Copyright 2017, 2018 Google, Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Converts a text embedding file into a binary format for quicker loading.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import tensorflow as tf | |
tf.flags.DEFINE_string('input', '', 'text file containing embeddings') | |
tf.flags.DEFINE_string('output_vocab', '', 'output file for vocabulary') | |
tf.flags.DEFINE_string('output_npy', '', 'output file for binary') | |
FLAGS = tf.flags.FLAGS | |
def main(_): | |
vecs = [] | |
vocab = [] | |
with tf.gfile.GFile(FLAGS.input) as fh: | |
for line in fh: | |
parts = line.strip().split() | |
vocab.append(parts[0]) | |
vecs.append([float(x) for x in parts[1:]]) | |
with tf.gfile.GFile(FLAGS.output_vocab, 'w') as fh: | |
fh.write('\n'.join(vocab)) | |
fh.write('\n') | |
vecs = np.array(vecs, dtype=np.float32) | |
np.save(FLAGS.output_npy, vecs, allow_pickle=False) | |
if __name__ == '__main__': | |
tf.app.run() | |