NCTC / models /research /lfads /plot_lfads.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
6.56 kB
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import numpy as np
import tensorflow as tf
def _plot_item(W, name, full_name, nspaces):
plt.figure()
if W.shape == ():
print(name, ": ", W)
elif W.shape[0] == 1:
plt.stem(W.T)
plt.title(full_name)
elif W.shape[1] == 1:
plt.stem(W)
plt.title(full_name)
else:
plt.imshow(np.abs(W), interpolation='nearest', cmap='jet');
plt.colorbar()
plt.title(full_name)
def all_plot(d, full_name="", exclude="", nspaces=0):
"""Recursively plot all the LFADS model parameters in the nested
dictionary."""
for k, v in d.iteritems():
this_name = full_name+"/"+k
if isinstance(v, dict):
all_plot(v, full_name=this_name, exclude=exclude, nspaces=nspaces+4)
else:
if exclude == "" or exclude not in this_name:
_plot_item(v, name=k, full_name=full_name+"/"+k, nspaces=nspaces+4)
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0,
color='r', title=None):
if bidx is None:
vals_txn = np.mean(vals_bxtxn, axis=0)
else:
vals_txn = vals_bxtxn[bidx,:,:]
T, N = vals_txn.shape
if n_to_plot > N:
n_to_plot = N
plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)),
color=color, lw=1.0)
plt.axis('tight')
if title:
plt.title(title)
def plot_lfads_timeseries(data_bxtxn, model_vals, ext_input_bxtxi=None,
truth_bxtxn=None, bidx=None, output_dist="poisson",
conversion_factor=1.0, subplot_cidx=0,
col_title=None):
n_to_plot = 10
scale = 1.0
nrows = 7
plt.subplot(nrows,2,1+subplot_cidx)
if output_dist == 'poisson':
rates = means = conversion_factor * model_vals['output_dist_params']
plot_time_series(rates, bidx, n_to_plot=n_to_plot, scale=scale,
title=col_title + " rates (LFADS - red, Truth - black)")
elif output_dist == 'gaussian':
means_vars = model_vals['output_dist_params']
means, vars = np.split(means_vars,2, axis=2) # bxtxn
stds = np.sqrt(vars)
plot_time_series(means, bidx, n_to_plot=n_to_plot, scale=scale,
title=col_title + " means (LFADS - red, Truth - black)")
plot_time_series(means+stds, bidx, n_to_plot=n_to_plot, scale=scale,
color='c')
plot_time_series(means-stds, bidx, n_to_plot=n_to_plot, scale=scale,
color='c')
else:
assert 'NIY'
if truth_bxtxn is not None:
plot_time_series(truth_bxtxn, bidx, n_to_plot=n_to_plot, color='k',
scale=scale)
input_title = ""
if "controller_outputs" in model_vals.keys():
input_title += " Controller Output"
plt.subplot(nrows,2,3+subplot_cidx)
u_t = model_vals['controller_outputs'][0:-1]
plot_time_series(u_t, bidx, n_to_plot=n_to_plot, color='c', scale=1.0,
title=col_title + input_title)
if ext_input_bxtxi is not None:
input_title += " External Input"
plot_time_series(ext_input_bxtxi, n_to_plot=n_to_plot, color='b',
scale=scale, title=col_title + input_title)
plt.subplot(nrows,2,5+subplot_cidx)
plot_time_series(means, bidx,
n_to_plot=n_to_plot, scale=1.0,
title=col_title + " Spikes (LFADS - red, Spikes - black)")
plot_time_series(data_bxtxn, bidx, n_to_plot=n_to_plot, color='k', scale=1.0)
plt.subplot(nrows,2,7+subplot_cidx)
plot_time_series(model_vals['factors'], bidx, n_to_plot=n_to_plot, color='b',
scale=2.0, title=col_title + " Factors")
plt.subplot(nrows,2,9+subplot_cidx)
plot_time_series(model_vals['gen_states'], bidx, n_to_plot=n_to_plot,
color='g', scale=1.0, title=col_title + " Generator State")
if bidx is not None:
data_nxt = data_bxtxn[bidx,:,:].T
params_nxt = model_vals['output_dist_params'][bidx,:,:].T
else:
data_nxt = np.mean(data_bxtxn, axis=0).T
params_nxt = np.mean(model_vals['output_dist_params'], axis=0).T
if output_dist == 'poisson':
means_nxt = params_nxt
elif output_dist == 'gaussian': # (means+vars) x time
means_nxt = np.vsplit(params_nxt,2)[0] # get means
else:
assert "NIY"
plt.subplot(nrows,2,11+subplot_cidx)
plt.imshow(data_nxt, aspect='auto', interpolation='nearest')
plt.title(col_title + ' Data')
plt.subplot(nrows,2,13+subplot_cidx)
plt.imshow(means_nxt, aspect='auto', interpolation='nearest')
plt.title(col_title + ' Means')
def plot_lfads(train_bxtxd, train_model_vals,
train_ext_input_bxtxi=None, train_truth_bxtxd=None,
valid_bxtxd=None, valid_model_vals=None,
valid_ext_input_bxtxi=None, valid_truth_bxtxd=None,
bidx=None, cf=1.0, output_dist='poisson'):
# Plotting
f = plt.figure(figsize=(18,20), tight_layout=True)
plot_lfads_timeseries(train_bxtxd, train_model_vals,
train_ext_input_bxtxi,
truth_bxtxn=train_truth_bxtxd,
conversion_factor=cf, bidx=bidx,
output_dist=output_dist, col_title='Train')
plot_lfads_timeseries(valid_bxtxd, valid_model_vals,
valid_ext_input_bxtxi,
truth_bxtxn=valid_truth_bxtxd,
conversion_factor=cf, bidx=bidx,
output_dist=output_dist,
subplot_cidx=1, col_title='Valid')
# Convert from figure to an numpy array width x height x 3 (last for RGB)
f.canvas.draw()
data = np.fromstring(f.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data_wxhx3 = data.reshape(f.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data_wxhx3