Spaces:
Running
Running
# Copyright 2017 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# ============================================================================== | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import matplotlib | |
matplotlib.use('Agg') | |
from matplotlib import pyplot as plt | |
import numpy as np | |
import tensorflow as tf | |
def _plot_item(W, name, full_name, nspaces): | |
plt.figure() | |
if W.shape == (): | |
print(name, ": ", W) | |
elif W.shape[0] == 1: | |
plt.stem(W.T) | |
plt.title(full_name) | |
elif W.shape[1] == 1: | |
plt.stem(W) | |
plt.title(full_name) | |
else: | |
plt.imshow(np.abs(W), interpolation='nearest', cmap='jet'); | |
plt.colorbar() | |
plt.title(full_name) | |
def all_plot(d, full_name="", exclude="", nspaces=0): | |
"""Recursively plot all the LFADS model parameters in the nested | |
dictionary.""" | |
for k, v in d.iteritems(): | |
this_name = full_name+"/"+k | |
if isinstance(v, dict): | |
all_plot(v, full_name=this_name, exclude=exclude, nspaces=nspaces+4) | |
else: | |
if exclude == "" or exclude not in this_name: | |
_plot_item(v, name=k, full_name=full_name+"/"+k, nspaces=nspaces+4) | |
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0, | |
color='r', title=None): | |
if bidx is None: | |
vals_txn = np.mean(vals_bxtxn, axis=0) | |
else: | |
vals_txn = vals_bxtxn[bidx,:,:] | |
T, N = vals_txn.shape | |
if n_to_plot > N: | |
n_to_plot = N | |
plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)), | |
color=color, lw=1.0) | |
plt.axis('tight') | |
if title: | |
plt.title(title) | |
def plot_lfads_timeseries(data_bxtxn, model_vals, ext_input_bxtxi=None, | |
truth_bxtxn=None, bidx=None, output_dist="poisson", | |
conversion_factor=1.0, subplot_cidx=0, | |
col_title=None): | |
n_to_plot = 10 | |
scale = 1.0 | |
nrows = 7 | |
plt.subplot(nrows,2,1+subplot_cidx) | |
if output_dist == 'poisson': | |
rates = means = conversion_factor * model_vals['output_dist_params'] | |
plot_time_series(rates, bidx, n_to_plot=n_to_plot, scale=scale, | |
title=col_title + " rates (LFADS - red, Truth - black)") | |
elif output_dist == 'gaussian': | |
means_vars = model_vals['output_dist_params'] | |
means, vars = np.split(means_vars,2, axis=2) # bxtxn | |
stds = np.sqrt(vars) | |
plot_time_series(means, bidx, n_to_plot=n_to_plot, scale=scale, | |
title=col_title + " means (LFADS - red, Truth - black)") | |
plot_time_series(means+stds, bidx, n_to_plot=n_to_plot, scale=scale, | |
color='c') | |
plot_time_series(means-stds, bidx, n_to_plot=n_to_plot, scale=scale, | |
color='c') | |
else: | |
assert 'NIY' | |
if truth_bxtxn is not None: | |
plot_time_series(truth_bxtxn, bidx, n_to_plot=n_to_plot, color='k', | |
scale=scale) | |
input_title = "" | |
if "controller_outputs" in model_vals.keys(): | |
input_title += " Controller Output" | |
plt.subplot(nrows,2,3+subplot_cidx) | |
u_t = model_vals['controller_outputs'][0:-1] | |
plot_time_series(u_t, bidx, n_to_plot=n_to_plot, color='c', scale=1.0, | |
title=col_title + input_title) | |
if ext_input_bxtxi is not None: | |
input_title += " External Input" | |
plot_time_series(ext_input_bxtxi, n_to_plot=n_to_plot, color='b', | |
scale=scale, title=col_title + input_title) | |
plt.subplot(nrows,2,5+subplot_cidx) | |
plot_time_series(means, bidx, | |
n_to_plot=n_to_plot, scale=1.0, | |
title=col_title + " Spikes (LFADS - red, Spikes - black)") | |
plot_time_series(data_bxtxn, bidx, n_to_plot=n_to_plot, color='k', scale=1.0) | |
plt.subplot(nrows,2,7+subplot_cidx) | |
plot_time_series(model_vals['factors'], bidx, n_to_plot=n_to_plot, color='b', | |
scale=2.0, title=col_title + " Factors") | |
plt.subplot(nrows,2,9+subplot_cidx) | |
plot_time_series(model_vals['gen_states'], bidx, n_to_plot=n_to_plot, | |
color='g', scale=1.0, title=col_title + " Generator State") | |
if bidx is not None: | |
data_nxt = data_bxtxn[bidx,:,:].T | |
params_nxt = model_vals['output_dist_params'][bidx,:,:].T | |
else: | |
data_nxt = np.mean(data_bxtxn, axis=0).T | |
params_nxt = np.mean(model_vals['output_dist_params'], axis=0).T | |
if output_dist == 'poisson': | |
means_nxt = params_nxt | |
elif output_dist == 'gaussian': # (means+vars) x time | |
means_nxt = np.vsplit(params_nxt,2)[0] # get means | |
else: | |
assert "NIY" | |
plt.subplot(nrows,2,11+subplot_cidx) | |
plt.imshow(data_nxt, aspect='auto', interpolation='nearest') | |
plt.title(col_title + ' Data') | |
plt.subplot(nrows,2,13+subplot_cidx) | |
plt.imshow(means_nxt, aspect='auto', interpolation='nearest') | |
plt.title(col_title + ' Means') | |
def plot_lfads(train_bxtxd, train_model_vals, | |
train_ext_input_bxtxi=None, train_truth_bxtxd=None, | |
valid_bxtxd=None, valid_model_vals=None, | |
valid_ext_input_bxtxi=None, valid_truth_bxtxd=None, | |
bidx=None, cf=1.0, output_dist='poisson'): | |
# Plotting | |
f = plt.figure(figsize=(18,20), tight_layout=True) | |
plot_lfads_timeseries(train_bxtxd, train_model_vals, | |
train_ext_input_bxtxi, | |
truth_bxtxn=train_truth_bxtxd, | |
conversion_factor=cf, bidx=bidx, | |
output_dist=output_dist, col_title='Train') | |
plot_lfads_timeseries(valid_bxtxd, valid_model_vals, | |
valid_ext_input_bxtxi, | |
truth_bxtxn=valid_truth_bxtxd, | |
conversion_factor=cf, bidx=bidx, | |
output_dist=output_dist, | |
subplot_cidx=1, col_title='Valid') | |
# Convert from figure to an numpy array width x height x 3 (last for RGB) | |
f.canvas.draw() | |
data = np.fromstring(f.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data_wxhx3 = data.reshape(f.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data_wxhx3 | |