NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
32.5 kB
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Neural GPU Model."""
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.framework import function
import data_utils as data
do_jit = False # Gives more speed but experimental for now.
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
def conv_linear(args, kw, kh, nin, nout, rate, do_bias, bias_start, prefix):
"""Convolutional linear map."""
if not isinstance(args, (list, tuple)):
args = [args]
with tf.variable_scope(prefix):
with tf.device("/cpu:0"):
k = tf.get_variable("CvK", [kw, kh, nin, nout])
if len(args) == 1:
arg = args[0]
else:
arg = tf.concat(axis=3, values=args)
res = tf.nn.convolution(arg, k, dilation_rate=(rate, 1), padding="SAME")
if not do_bias: return res
with tf.device("/cpu:0"):
bias_term = tf.get_variable(
"CvB", [nout], initializer=tf.constant_initializer(bias_start))
bias_term = tf.reshape(bias_term, [1, 1, 1, nout])
return res + bias_term
def sigmoid_cutoff(x, cutoff):
"""Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
y = tf.sigmoid(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d), name="cutoff_min")
@function.Defun(tf.float32, noinline=True)
def sigmoid_cutoff_12(x):
"""Sigmoid with cutoff 1.2, specialized for speed and memory use."""
y = tf.sigmoid(x)
return tf.minimum(1.0, tf.maximum(0.0, 1.2 * y - 0.1), name="cutoff_min_12")
@function.Defun(tf.float32, noinline=True)
def sigmoid_hard(x):
"""Hard sigmoid."""
return tf.minimum(1.0, tf.maximum(0.0, 0.25 * x + 0.5))
def place_at14(decided, selected, it):
"""Place selected at it-th coordinate of decided, dim=1 of 4."""
slice1 = decided[:, :it, :, :]
slice2 = decided[:, it + 1:, :, :]
return tf.concat(axis=1, values=[slice1, selected, slice2])
def place_at13(decided, selected, it):
"""Place selected at it-th coordinate of decided, dim=1 of 3."""
slice1 = decided[:, :it, :]
slice2 = decided[:, it + 1:, :]
return tf.concat(axis=1, values=[slice1, selected, slice2])
def tanh_cutoff(x, cutoff):
"""Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
y = tf.tanh(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))
@function.Defun(tf.float32, noinline=True)
def tanh_hard(x):
"""Hard tanh."""
return tf.minimum(1.0, tf.maximum(0.0, x))
def layer_norm(x, nmaps, prefix, epsilon=1e-5):
"""Layer normalize the 4D tensor x, averaging over the last dimension."""
with tf.variable_scope(prefix):
scale = tf.get_variable("layer_norm_scale", [nmaps],
initializer=tf.ones_initializer())
bias = tf.get_variable("layer_norm_bias", [nmaps],
initializer=tf.zeros_initializer())
mean, variance = tf.nn.moments(x, [3], keep_dims=True)
norm_x = (x - mean) / tf.sqrt(variance + epsilon)
return norm_x * scale + bias
def conv_gru(inpts, mem, kw, kh, nmaps, rate, cutoff, prefix, do_layer_norm,
args_len=None):
"""Convolutional GRU."""
def conv_lin(args, suffix, bias_start):
total_args_len = args_len or len(args) * nmaps
res = conv_linear(args, kw, kh, total_args_len, nmaps, rate, True,
bias_start, prefix + "/" + suffix)
if do_layer_norm:
return layer_norm(res, nmaps, prefix + "/" + suffix)
else:
return res
if cutoff == 1.2:
reset = sigmoid_cutoff_12(conv_lin(inpts + [mem], "r", 1.0))
gate = sigmoid_cutoff_12(conv_lin(inpts + [mem], "g", 1.0))
elif cutoff > 10:
reset = sigmoid_hard(conv_lin(inpts + [mem], "r", 1.0))
gate = sigmoid_hard(conv_lin(inpts + [mem], "g", 1.0))
else:
reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
if cutoff > 10:
candidate = tanh_hard(conv_lin(inpts + [reset * mem], "c", 0.0))
else:
# candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
return gate * mem + (1 - gate) * candidate
CHOOSE_K = 256
def memory_call(q, l, nmaps, mem_size, vocab_size, num_gpus, update_mem):
raise ValueError("Fill for experiments with additional memory structures.")
def memory_run(step, nmaps, mem_size, batch_size, vocab_size,
global_step, do_training, update_mem, decay_factor, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it):
"""Run memory."""
q = step[:, 0, it, :]
mlabels = gpu_targets_tn[:, it, 0]
res, mask, mem_loss = memory_call(
q, mlabels, nmaps, mem_size, vocab_size, num_gpus, update_mem)
res = tf.gather(target_emb_weights, res) * tf.expand_dims(mask[:, 0], 1)
# Mix gold and original in the first steps, 20% later.
gold = tf.nn.dropout(tf.gather(target_emb_weights, mlabels), 0.7)
use_gold = 1.0 - tf.cast(global_step, tf.float32) / (1000. * decay_factor)
use_gold = tf.maximum(use_gold, 0.2) * do_training
mem = tf.cond(tf.less(tf.random_uniform([]), use_gold),
lambda: use_gold * gold + (1.0 - use_gold) * res,
lambda: res)
mem = tf.reshape(mem, [-1, 1, 1, nmaps])
return mem, mem_loss, update_mem
@tf.RegisterGradient("CustomIdG")
def _custom_id_grad(_, grads):
return grads
def quantize(t, quant_scale, max_value=1.0):
"""Quantize a tensor t with each element in [-max_value, max_value]."""
t = tf.minimum(max_value, tf.maximum(t, -max_value))
big = quant_scale * (t + max_value) + 0.5
with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
res = (tf.floor(big) / quant_scale) - max_value
return res
def quantize_weights_op(quant_scale, max_value):
ops = [v.assign(quantize(v, quant_scale, float(max_value)))
for v in tf.trainable_variables()]
return tf.group(*ops)
def autoenc_quantize(x, nbits, nmaps, do_training, layers=1):
"""Autoencoder into nbits vectors of bits, using noise and sigmoids."""
enc_x = tf.reshape(x, [-1, nmaps])
for i in xrange(layers - 1):
enc_x = tf.layers.dense(enc_x, nmaps, name="autoenc_%d" % i)
enc_x = tf.layers.dense(enc_x, nbits, name="autoenc_%d" % (layers - 1))
noise = tf.truncated_normal(tf.shape(enc_x), stddev=2.0)
dec_x = sigmoid_cutoff_12(enc_x + noise * do_training)
dec_x = tf.reshape(dec_x, [-1, nbits])
for i in xrange(layers):
dec_x = tf.layers.dense(dec_x, nmaps, name="autodec_%d" % i)
return tf.reshape(dec_x, tf.shape(x))
def make_dense(targets, noclass, low_param):
"""Move a batch of targets to a dense 1-hot representation."""
low = low_param / float(noclass - 1)
high = 1.0 - low * (noclass - 1)
targets = tf.cast(targets, tf.int64)
return tf.one_hot(targets, depth=noclass, on_value=high, off_value=low)
def reorder_beam(beam_size, batch_size, beam_val, output, is_first,
tensors_to_reorder):
"""Reorder to minimize beam costs."""
# beam_val is [batch_size x beam_size]; let b = batch_size * beam_size
# decided is len x b x a x b
# output is b x out_size; step is b x len x a x b;
outputs = tf.split(axis=0, num_or_size_splits=beam_size, value=tf.nn.log_softmax(output))
all_beam_vals, all_beam_idx = [], []
beam_range = 1 if is_first else beam_size
for i in xrange(beam_range):
top_out, top_out_idx = tf.nn.top_k(outputs[i], k=beam_size)
cur_beam_val = beam_val[:, i]
top_out = tf.Print(top_out, [top_out, top_out_idx, beam_val, i,
cur_beam_val], "GREPO", summarize=8)
all_beam_vals.append(top_out + tf.expand_dims(cur_beam_val, 1))
all_beam_idx.append(top_out_idx)
all_beam_idx = tf.reshape(tf.transpose(tf.concat(axis=1, values=all_beam_idx), [1, 0]),
[-1])
top_beam, top_beam_idx = tf.nn.top_k(tf.concat(axis=1, values=all_beam_vals), k=beam_size)
top_beam_idx = tf.Print(top_beam_idx, [top_beam, top_beam_idx],
"GREP", summarize=8)
reordered = [[] for _ in xrange(len(tensors_to_reorder) + 1)]
top_out_idx = []
for i in xrange(beam_size):
which_idx = top_beam_idx[:, i] * batch_size + tf.range(batch_size)
top_out_idx.append(tf.gather(all_beam_idx, which_idx))
which_beam = top_beam_idx[:, i] / beam_size # [batch]
which_beam = which_beam * batch_size + tf.range(batch_size)
reordered[0].append(tf.gather(output, which_beam))
for i, t in enumerate(tensors_to_reorder):
reordered[i + 1].append(tf.gather(t, which_beam))
new_tensors = [tf.concat(axis=0, values=t) for t in reordered]
top_out_idx = tf.concat(axis=0, values=top_out_idx)
return (top_beam, new_tensors[0], top_out_idx, new_tensors[1:])
class NeuralGPU(object):
"""Neural GPU Model."""
def __init__(self, nmaps, vec_size, niclass, noclass, dropout,
max_grad_norm, cutoff, nconvs, kw, kh, height, mem_size,
learning_rate, min_length, num_gpus, num_replicas,
grad_noise_scale, sampling_rate, act_noise=0.0, do_rnn=False,
atrous=False, beam_size=1, backward=True, do_layer_norm=False,
autoenc_decay=1.0):
# Feeds for parameters and ops to update them.
self.nmaps = nmaps
if backward:
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.cur_length = tf.Variable(min_length, trainable=False)
self.cur_length_incr_op = self.cur_length.assign_add(1)
self.lr = tf.Variable(learning_rate, trainable=False)
self.lr_decay_op = self.lr.assign(self.lr * 0.995)
self.do_training = tf.placeholder(tf.float32, name="do_training")
self.update_mem = tf.placeholder(tf.int32, name="update_mem")
self.noise_param = tf.placeholder(tf.float32, name="noise_param")
# Feeds for inputs, targets, outputs, losses, etc.
self.input = tf.placeholder(tf.int32, name="inp")
self.target = tf.placeholder(tf.int32, name="tgt")
self.prev_step = tf.placeholder(tf.float32, name="prev_step")
gpu_input = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.input)
gpu_target = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.target)
gpu_prev_step = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.prev_step)
batch_size = tf.shape(gpu_input[0])[0]
if backward:
adam_lr = 0.005 * self.lr
adam = tf.train.AdamOptimizer(adam_lr, epsilon=1e-3)
def adam_update(grads):
return adam.apply_gradients(zip(grads, tf.trainable_variables()),
global_step=self.global_step,
name="adam_update")
# When switching from Adam to SGD we perform reverse-decay.
if backward:
global_step_float = tf.cast(self.global_step, tf.float32)
sampling_decay_exponent = global_step_float / 100000.0
sampling_decay = tf.maximum(0.05, tf.pow(0.5, sampling_decay_exponent))
self.sampling = sampling_rate * 0.05 / sampling_decay
else:
self.sampling = tf.constant(0.0)
# Cache variables on cpu if needed.
if num_replicas > 1 or num_gpus > 1:
with tf.device("/cpu:0"):
caching_const = tf.constant(0)
tf.get_variable_scope().set_caching_device(caching_const.op.device)
# partitioner = tf.variable_axis_size_partitioner(1024*256*4)
# tf.get_variable_scope().set_partitioner(partitioner)
def gpu_avg(l):
if l[0] is None:
for elem in l:
assert elem is None
return 0.0
if len(l) < 2:
return l[0]
return sum(l) / float(num_gpus)
self.length_tensor = tf.placeholder(tf.int32, name="length")
with tf.device("/cpu:0"):
emb_weights = tf.get_variable(
"embedding", [niclass, vec_size],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
if beam_size > 0:
target_emb_weights = tf.get_variable(
"target_embedding", [noclass, nmaps],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
e0 = tf.scatter_update(emb_weights,
tf.constant(0, dtype=tf.int32, shape=[1]),
tf.zeros([1, vec_size]))
output_w = tf.get_variable("output_w", [nmaps, noclass], tf.float32)
def conv_rate(layer):
if atrous:
return 2**layer
return 1
# pylint: disable=cell-var-from-loop
def enc_step(step):
"""Encoder step."""
if autoenc_decay < 1.0:
quant_step = autoenc_quantize(step, 16, nmaps, self.do_training)
if backward:
exp_glob = tf.train.exponential_decay(1.0, self.global_step - 10000,
1000, autoenc_decay)
dec_factor = 1.0 - exp_glob # * self.do_training
dec_factor = tf.cond(tf.less(self.global_step, 10500),
lambda: tf.constant(0.05), lambda: dec_factor)
else:
dec_factor = 1.0
cur = tf.cond(tf.less(tf.random_uniform([]), dec_factor),
lambda: quant_step, lambda: step)
else:
cur = step
if dropout > 0.0001:
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
# Do nconvs-many CGRU steps.
if do_jit and tf.get_variable_scope().reuse:
with jit_scope():
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "ecgru_%d" % layer, do_layer_norm)
else:
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "ecgru_%d" % layer, do_layer_norm)
return cur
zero_tgt = tf.zeros([batch_size, nmaps, 1])
zero_tgt.set_shape([None, nmaps, 1])
def dec_substep(step, decided):
"""Decoder sub-step."""
cur = step
if dropout > 0.0001:
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
# Do nconvs-many CGRU steps.
if do_jit and tf.get_variable_scope().reuse:
with jit_scope():
for layer in xrange(nconvs):
cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "dcgru_%d" % layer, do_layer_norm)
else:
for layer in xrange(nconvs):
cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "dcgru_%d" % layer, do_layer_norm)
return cur
# pylint: enable=cell-var-from-loop
def dec_step(step, it, it_int, decided, output_ta, tgts,
mloss, nupd_in, out_idx, beam_cost):
"""Decoder step."""
nupd, mem_loss = 0, 0.0
if mem_size > 0:
it_incr = tf.minimum(it+1, length - 1)
mem, mem_loss, nupd = memory_run(
step, nmaps, mem_size, batch_size, noclass, self.global_step,
self.do_training, self.update_mem, 10, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it_incr)
step = dec_substep(step, decided)
output_l = tf.expand_dims(tf.expand_dims(step[:, it, 0, :], 1), 1)
# Calculate argmax output.
output = tf.reshape(output_l, [-1, nmaps])
# pylint: disable=cell-var-from-loop
output = tf.matmul(output, output_w)
if beam_size > 1:
beam_cost, output, out, reordered = reorder_beam(
beam_size, batch_size, beam_cost, output, it_int == 0,
[output_l, out_idx, step, decided])
[output_l, out_idx, step, decided] = reordered
else:
# Scheduled sampling.
out = tf.multinomial(tf.stop_gradient(output), 1)
out = tf.to_int32(tf.squeeze(out, [1]))
out_write = output_ta.write(it, output_l[:batch_size, :, :, :])
output = tf.gather(target_emb_weights, out)
output = tf.reshape(output, [-1, 1, nmaps])
output = tf.concat(axis=1, values=[output] * height)
tgt = tgts[it, :, :, :]
selected = tf.cond(tf.less(tf.random_uniform([]), self.sampling),
lambda: output, lambda: tgt)
# pylint: enable=cell-var-from-loop
dec_write = place_at14(decided, tf.expand_dims(selected, 1), it)
out_idx = place_at13(
out_idx, tf.reshape(out, [beam_size * batch_size, 1, 1]), it)
if mem_size > 0:
mem = tf.concat(axis=2, values=[mem] * height)
dec_write = place_at14(dec_write, mem, it_incr)
return (step, dec_write, out_write, mloss + mem_loss, nupd_in + nupd,
out_idx, beam_cost)
# Main model construction.
gpu_outputs = []
gpu_losses = []
gpu_grad_norms = []
grads_list = []
gpu_out_idx = []
self.after_enc_step = []
for gpu in xrange(num_gpus): # Multi-GPU towers, average gradients later.
length = self.length_tensor
length_float = tf.cast(length, tf.float32)
if gpu > 0:
tf.get_variable_scope().reuse_variables()
gpu_outputs.append([])
gpu_losses.append([])
gpu_grad_norms.append([])
with tf.name_scope("gpu%d" % gpu), tf.device("/gpu:%d" % gpu):
# Main graph creation loop.
data.print_out("Creating model.")
start_time = time.time()
# Embed inputs and calculate mask.
with tf.device("/cpu:0"):
tgt_shape = tf.shape(tf.squeeze(gpu_target[gpu], [1]))
weights = tf.where(tf.squeeze(gpu_target[gpu], [1]) > 0,
tf.ones(tgt_shape), tf.zeros(tgt_shape))
# Embed inputs and targets.
with tf.control_dependencies([e0]):
start = tf.gather(emb_weights, gpu_input[gpu]) # b x h x l x nmaps
gpu_targets_tn = gpu_target[gpu] # b x 1 x len
if beam_size > 0:
embedded_targets_tn = tf.gather(target_emb_weights,
gpu_targets_tn)
embedded_targets_tn = tf.transpose(
embedded_targets_tn, [2, 0, 1, 3]) # len x b x 1 x nmaps
embedded_targets_tn = tf.concat(axis=2, values=[embedded_targets_tn] * height)
# First image comes from start by applying convolution and adding 0s.
start = tf.transpose(start, [0, 2, 1, 3]) # Now b x len x h x vec_s
first = conv_linear(start, 1, 1, vec_size, nmaps, 1, True, 0.0, "input")
first = layer_norm(first, nmaps, "input")
# Computation steps.
keep_prob = dropout * 3.0 / tf.sqrt(length_float)
keep_prob = 1.0 - self.do_training * keep_prob
act_noise_scale = act_noise * self.do_training
# Start with a convolutional gate merging previous step.
step = conv_gru([gpu_prev_step[gpu]], first,
kw, kh, nmaps, 1, cutoff, "first", do_layer_norm)
# This is just for running a baseline RNN seq2seq model.
if do_rnn:
self.after_enc_step.append(step) # Not meaningful here, but needed.
def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(height * nmaps)
cell = tf.contrib.rnn.MultiRNNCell(
[lstm_cell() for _ in range(nconvs)])
with tf.variable_scope("encoder"):
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
cell, tf.reshape(step, [batch_size, length, height * nmaps]),
dtype=tf.float32, time_major=False)
# Attention.
attn = tf.layers.dense(
encoder_outputs, height * nmaps, name="attn1")
# pylint: disable=cell-var-from-loop
@function.Defun(noinline=True)
def attention_query(query, attn_v):
vecs = tf.tanh(attn + tf.expand_dims(query, 1))
mask = tf.reduce_sum(vecs * tf.reshape(attn_v, [1, 1, -1]), 2)
mask = tf.nn.softmax(mask)
return tf.reduce_sum(encoder_outputs * tf.expand_dims(mask, 2), 1)
with tf.variable_scope("decoder"):
def decoder_loop_fn(state__prev_cell_out__unused, cell_inp__cur_tgt):
"""Decoder loop function."""
state, prev_cell_out, _ = state__prev_cell_out__unused
cell_inp, cur_tgt = cell_inp__cur_tgt
attn_q = tf.layers.dense(prev_cell_out, height * nmaps,
name="attn_query")
attn_res = attention_query(attn_q, tf.get_variable(
"attn_v", [height * nmaps],
initializer=tf.random_uniform_initializer(-0.1, 0.1)))
concatenated = tf.reshape(tf.concat(axis=1, values=[cell_inp, attn_res]),
[batch_size, 2 * height * nmaps])
cell_inp = tf.layers.dense(
concatenated, height * nmaps, name="attn_merge")
output, new_state = cell(cell_inp, state)
mem_loss = 0.0
if mem_size > 0:
res, mask, mem_loss = memory_call(
output, cur_tgt, height * nmaps, mem_size, noclass,
num_gpus, self.update_mem)
res = tf.gather(target_emb_weights, res)
res *= tf.expand_dims(mask[:, 0], 1)
output = tf.layers.dense(
tf.concat(axis=1, values=[output, res]), height * nmaps, name="rnnmem")
return new_state, output, mem_loss
# pylint: enable=cell-var-from-loop
gpu_targets = tf.squeeze(gpu_target[gpu], [1]) # b x len
gpu_tgt_trans = tf.transpose(gpu_targets, [1, 0])
dec_zero = tf.zeros([batch_size, 1], dtype=tf.int32)
dec_inp = tf.concat(axis=1, values=[dec_zero, gpu_targets])
dec_inp = dec_inp[:, :length]
embedded_dec_inp = tf.gather(target_emb_weights, dec_inp)
embedded_dec_inp_proj = tf.layers.dense(
embedded_dec_inp, height * nmaps, name="dec_proj")
embedded_dec_inp_proj = tf.transpose(embedded_dec_inp_proj,
[1, 0, 2])
init_vals = (encoder_state,
tf.zeros([batch_size, height * nmaps]), 0.0)
_, dec_outputs, mem_losses = tf.scan(
decoder_loop_fn, (embedded_dec_inp_proj, gpu_tgt_trans),
initializer=init_vals)
mem_loss = tf.reduce_mean(mem_losses)
outputs = tf.layers.dense(dec_outputs, nmaps, name="out_proj")
# Final convolution to get logits, list outputs.
outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
outputs = tf.reshape(outputs, [length, batch_size, noclass])
gpu_out_idx.append(tf.argmax(outputs, 2))
else: # Here we go with the Neural GPU.
# Encoder.
enc_length = length
step = enc_step(step) # First step hard-coded.
# pylint: disable=cell-var-from-loop
i = tf.constant(1)
c = lambda i, _s: tf.less(i, enc_length)
def enc_step_lambda(i, step):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
new_step = enc_step(step)
return (i + 1, new_step)
_, step = tf.while_loop(
c, enc_step_lambda, [i, step],
parallel_iterations=1, swap_memory=True)
# pylint: enable=cell-var-from-loop
self.after_enc_step.append(step)
# Decoder.
if beam_size > 0:
output_ta = tf.TensorArray(
dtype=tf.float32, size=length, dynamic_size=False,
infer_shape=False, name="outputs")
out_idx = tf.zeros([beam_size * batch_size, length, 1],
dtype=tf.int32)
decided_t = tf.zeros([beam_size * batch_size, length,
height, vec_size])
# Prepare for beam search.
tgts = tf.concat(axis=1, values=[embedded_targets_tn] * beam_size)
beam_cost = tf.zeros([batch_size, beam_size])
step = tf.concat(axis=0, values=[step] * beam_size)
# First step hard-coded.
step, decided_t, output_ta, mem_loss, nupd, oi, bc = dec_step(
step, 0, 0, decided_t, output_ta, tgts, 0.0, 0, out_idx,
beam_cost)
tf.get_variable_scope().reuse_variables()
# pylint: disable=cell-var-from-loop
def step_lambda(i, step, dec_t, out_ta, ml, nu, oi, bc):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
s, d, t, nml, nu, oi, bc = dec_step(
step, i, 1, dec_t, out_ta, tgts, ml, nu, oi, bc)
return (i + 1, s, d, t, nml, nu, oi, bc)
i = tf.constant(1)
c = lambda i, _s, _d, _o, _ml, _nu, _oi, _bc: tf.less(i, length)
_, step, _, output_ta, mem_loss, nupd, out_idx, _ = tf.while_loop(
c, step_lambda,
[i, step, decided_t, output_ta, mem_loss, nupd, oi, bc],
parallel_iterations=1, swap_memory=True)
# pylint: enable=cell-var-from-loop
gpu_out_idx.append(tf.squeeze(out_idx, [2]))
outputs = output_ta.stack()
outputs = tf.squeeze(outputs, [2, 3]) # Now l x b x nmaps
else:
# If beam_size is 0 or less, we don't have a decoder.
mem_loss = 0.0
outputs = tf.transpose(step[:, :, 1, :], [1, 0, 2])
gpu_out_idx.append(tf.argmax(outputs, 2))
# Final convolution to get logits, list outputs.
outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
outputs = tf.reshape(outputs, [length, batch_size, noclass])
gpu_outputs[gpu] = tf.nn.softmax(outputs)
# Calculate cross-entropy loss and normalize it.
targets_soft = make_dense(tf.squeeze(gpu_target[gpu], [1]),
noclass, 0.1)
targets_soft = tf.reshape(targets_soft, [-1, noclass])
targets_hard = make_dense(tf.squeeze(gpu_target[gpu], [1]),
noclass, 0.0)
targets_hard = tf.reshape(targets_hard, [-1, noclass])
output = tf.transpose(outputs, [1, 0, 2])
xent_soft = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
logits=tf.reshape(output, [-1, noclass]), labels=targets_soft),
[batch_size, length])
xent_hard = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
logits=tf.reshape(output, [-1, noclass]), labels=targets_hard),
[batch_size, length])
low, high = 0.1 / float(noclass - 1), 0.9
const = high * tf.log(high) + float(noclass - 1) * low * tf.log(low)
weight_sum = tf.reduce_sum(weights) + 1e-20
true_perp = tf.reduce_sum(xent_hard * weights) / weight_sum
soft_loss = tf.reduce_sum(xent_soft * weights) / weight_sum
perp_loss = soft_loss + const
# Final loss: cross-entropy + shared parameter relaxation part + extra.
mem_loss = 0.5 * tf.reduce_mean(mem_loss) / length_float
total_loss = perp_loss + mem_loss
gpu_losses[gpu].append(true_perp)
# Gradients.
if backward:
data.print_out("Creating backward pass for the model.")
grads = tf.gradients(
total_loss, tf.trainable_variables(),
colocate_gradients_with_ops=True)
for g_i, g in enumerate(grads):
if isinstance(g, tf.IndexedSlices):
grads[g_i] = tf.convert_to_tensor(g)
grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
gpu_grad_norms[gpu].append(norm)
for g in grads:
if grad_noise_scale > 0.001:
g += tf.truncated_normal(tf.shape(g)) * self.noise_param
grads_list.append(grads)
else:
gpu_grad_norms[gpu].append(0.0)
data.print_out("Created model for gpu %d in %.2f s."
% (gpu, time.time() - start_time))
self.updates = []
self.after_enc_step = tf.concat(axis=0, values=self.after_enc_step) # Concat GPUs.
if backward:
tf.get_variable_scope()._reuse = False
tf.get_variable_scope().set_caching_device(None)
grads = [gpu_avg([grads_list[g][i] for g in xrange(num_gpus)])
for i in xrange(len(grads_list[0]))]
update = adam_update(grads)
self.updates.append(update)
else:
self.updates.append(tf.no_op())
self.losses = [gpu_avg([gpu_losses[g][i] for g in xrange(num_gpus)])
for i in xrange(len(gpu_losses[0]))]
self.out_idx = tf.concat(axis=0, values=gpu_out_idx)
self.grad_norms = [gpu_avg([gpu_grad_norms[g][i] for g in xrange(num_gpus)])
for i in xrange(len(gpu_grad_norms[0]))]
self.outputs = [tf.concat(axis=1, values=[gpu_outputs[g] for g in xrange(num_gpus)])]
self.quantize_op = quantize_weights_op(512, 8)
if backward:
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
def step(self, sess, inp, target, do_backward_in, noise_param=None,
beam_size=2, eos_id=2, eos_cost=0.0, update_mem=None, state=None):
"""Run a step of the network."""
batch_size, height, length = inp.shape[0], inp.shape[1], inp.shape[2]
do_backward = do_backward_in
train_mode = True
if do_backward_in is None:
do_backward = False
train_mode = False
if update_mem is None:
update_mem = do_backward
feed_in = {}
# print " feeding sequences of length %d" % length
if state is None:
state = np.zeros([batch_size, length, height, self.nmaps])
feed_in[self.prev_step.name] = state
feed_in[self.length_tensor.name] = length
feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
feed_in[self.update_mem.name] = 1 if update_mem else 0
if do_backward_in is False:
feed_in[self.sampling.name] = 0.0
index = 0 # We're dynamic now.
feed_out = []
if do_backward:
feed_out.append(self.updates[index])
feed_out.append(self.grad_norms[index])
if train_mode:
feed_out.append(self.losses[index])
feed_in[self.input.name] = inp
feed_in[self.target.name] = target
feed_out.append(self.outputs[index])
if train_mode:
# Make a full-sequence training step with one call to session.run.
res = sess.run([self.after_enc_step] + feed_out, feed_in)
after_enc_state, res = res[0], res[1:]
else:
# Make a full-sequence decoding step with one call to session.run.
feed_in[self.sampling.name] = 1.1 # Sample every time.
res = sess.run([self.after_enc_step, self.out_idx] + feed_out, feed_in)
after_enc_state, out_idx = res[0], res[1]
res = [res[2][l] for l in xrange(length)]
outputs = [out_idx[:, i] for i in xrange(length)]
cost = [0.0 for _ in xrange(beam_size * batch_size)]
seen_eos = [0 for _ in xrange(beam_size * batch_size)]
for idx, logit in enumerate(res):
best = outputs[idx]
for b in xrange(batch_size):
if seen_eos[b] > 1:
cost[b] -= eos_cost
else:
cost[b] += np.log(logit[b][best[b]])
if best[b] in [eos_id]:
seen_eos[b] += 1
res = [[-c for c in cost]] + outputs
# Collect and output results.
offset = 0
norm = None
if do_backward:
offset = 2
norm = res[1]
if train_mode:
outputs = res[offset + 1]
outputs = [outputs[l] for l in xrange(length)]
return res[offset], outputs, norm, after_enc_state