Spaces:
Running
Running
# Copyright 2016 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Implementation of the Neural Programmer model described in https://openreview.net/pdf?id=ry2YOrcge | |
This file calls functions to load & pre-process data, construct the TF graph | |
and performs training or evaluation as specified by the flag evaluator_job | |
Author: aneelakantan (Arvind Neelakantan) | |
""" | |
from __future__ import print_function | |
import time | |
from random import Random | |
import numpy as np | |
import tensorflow as tf | |
import model | |
import wiki_data | |
import parameters | |
import data_utils | |
tf.flags.DEFINE_integer("train_steps", 100001, "Number of steps to train") | |
tf.flags.DEFINE_integer("eval_cycle", 500, | |
"Evaluate model at every eval_cycle steps") | |
tf.flags.DEFINE_integer("max_elements", 100, | |
"maximum rows that are considered for processing") | |
tf.flags.DEFINE_integer( | |
"max_number_cols", 15, | |
"maximum number columns that are considered for processing") | |
tf.flags.DEFINE_integer( | |
"max_word_cols", 25, | |
"maximum number columns that are considered for processing") | |
tf.flags.DEFINE_integer("question_length", 62, "maximum question length") | |
tf.flags.DEFINE_integer("max_entry_length", 1, "") | |
tf.flags.DEFINE_integer("max_passes", 4, "number of operation passes") | |
tf.flags.DEFINE_integer("embedding_dims", 256, "") | |
tf.flags.DEFINE_integer("batch_size", 20, "") | |
tf.flags.DEFINE_float("clip_gradients", 1.0, "") | |
tf.flags.DEFINE_float("eps", 1e-6, "") | |
tf.flags.DEFINE_float("param_init", 0.1, "") | |
tf.flags.DEFINE_float("learning_rate", 0.001, "") | |
tf.flags.DEFINE_float("l2_regularizer", 0.0001, "") | |
tf.flags.DEFINE_float("print_cost", 50.0, | |
"weighting factor in the objective function") | |
tf.flags.DEFINE_string("job_id", "temp", """job id""") | |
tf.flags.DEFINE_string("output_dir", "../model/", | |
"""output_dir""") | |
tf.flags.DEFINE_string("data_dir", "../data/", | |
"""data_dir""") | |
tf.flags.DEFINE_integer("write_every", 500, "wrtie every N") | |
tf.flags.DEFINE_integer("param_seed", 150, "") | |
tf.flags.DEFINE_integer("python_seed", 200, "") | |
tf.flags.DEFINE_float("dropout", 0.8, "dropout keep probability") | |
tf.flags.DEFINE_float("rnn_dropout", 0.9, | |
"dropout keep probability for rnn connections") | |
tf.flags.DEFINE_float("pad_int", -20000.0, | |
"number columns are padded with pad_int") | |
tf.flags.DEFINE_string("data_type", "double", "float or double") | |
tf.flags.DEFINE_float("word_dropout_prob", 0.9, "word dropout keep prob") | |
tf.flags.DEFINE_integer("word_cutoff", 10, "") | |
tf.flags.DEFINE_integer("vocab_size", 10800, "") | |
tf.flags.DEFINE_boolean("evaluator_job", False, | |
"wehther to run as trainer/evaluator") | |
tf.flags.DEFINE_float( | |
"bad_number_pre_process", -200000.0, | |
"number that is added to a corrupted table entry in a number column") | |
tf.flags.DEFINE_float("max_math_error", 3.0, | |
"max square loss error that is considered") | |
tf.flags.DEFINE_float("soft_min_value", 5.0, "") | |
FLAGS = tf.flags.FLAGS | |
class Utility: | |
#holds FLAGS and other variables that are used in different files | |
def __init__(self): | |
global FLAGS | |
self.FLAGS = FLAGS | |
self.unk_token = "UNK" | |
self.entry_match_token = "entry_match" | |
self.column_match_token = "column_match" | |
self.dummy_token = "dummy_token" | |
self.tf_data_type = {} | |
self.tf_data_type["double"] = tf.float64 | |
self.tf_data_type["float"] = tf.float32 | |
self.np_data_type = {} | |
self.np_data_type["double"] = np.float64 | |
self.np_data_type["float"] = np.float32 | |
self.operations_set = ["count"] + [ | |
"prev", "next", "first_rs", "last_rs", "group_by_max", "greater", | |
"lesser", "geq", "leq", "max", "min", "word-match" | |
] + ["reset_select"] + ["print"] | |
self.word_ids = {} | |
self.reverse_word_ids = {} | |
self.word_count = {} | |
self.random = Random(FLAGS.python_seed) | |
def evaluate(sess, data, batch_size, graph, i): | |
#computes accuracy | |
num_examples = 0.0 | |
gc = 0.0 | |
for j in range(0, len(data) - batch_size + 1, batch_size): | |
[ct] = sess.run([graph.final_correct], | |
feed_dict=data_utils.generate_feed_dict(data, j, batch_size, | |
graph)) | |
gc += ct * batch_size | |
num_examples += batch_size | |
print("dev set accuracy after ", i, " : ", gc / num_examples) | |
print(num_examples, len(data)) | |
print("--------") | |
def Train(graph, utility, batch_size, train_data, sess, model_dir, | |
saver): | |
#performs training | |
curr = 0 | |
train_set_loss = 0.0 | |
utility.random.shuffle(train_data) | |
start = time.time() | |
for i in range(utility.FLAGS.train_steps): | |
curr_step = i | |
if (i > 0 and i % FLAGS.write_every == 0): | |
model_file = model_dir + "/model_" + str(i) | |
saver.save(sess, model_file) | |
if curr + batch_size >= len(train_data): | |
curr = 0 | |
utility.random.shuffle(train_data) | |
step, cost_value = sess.run( | |
[graph.step, graph.total_cost], | |
feed_dict=data_utils.generate_feed_dict( | |
train_data, curr, batch_size, graph, train=True, utility=utility)) | |
curr = curr + batch_size | |
train_set_loss += cost_value | |
if (i > 0 and i % FLAGS.eval_cycle == 0): | |
end = time.time() | |
time_taken = end - start | |
print("step ", i, " ", time_taken, " seconds ") | |
start = end | |
print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle) | |
train_set_loss = 0.0 | |
def master(train_data, dev_data, utility): | |
#creates TF graph and calls trainer or evaluator | |
batch_size = utility.FLAGS.batch_size | |
model_dir = utility.FLAGS.output_dir + "/model" + utility.FLAGS.job_id + "/" | |
#create all paramters of the model | |
param_class = parameters.Parameters(utility) | |
params, global_step, init = param_class.parameters(utility) | |
key = "test" if (FLAGS.evaluator_job) else "train" | |
graph = model.Graph(utility, batch_size, utility.FLAGS.max_passes, mode=key) | |
graph.create_graph(params, global_step) | |
prev_dev_error = 0.0 | |
final_loss = 0.0 | |
final_accuracy = 0.0 | |
#start session | |
with tf.Session() as sess: | |
sess.run(init.name) | |
sess.run(graph.init_op.name) | |
to_save = params.copy() | |
saver = tf.train.Saver(to_save, max_to_keep=500) | |
if (FLAGS.evaluator_job): | |
while True: | |
selected_models = {} | |
file_list = tf.gfile.ListDirectory(model_dir) | |
for model_file in file_list: | |
if ("checkpoint" in model_file or "index" in model_file or | |
"meta" in model_file): | |
continue | |
if ("data" in model_file): | |
model_file = model_file.split(".")[0] | |
model_step = int( | |
model_file.split("_")[len(model_file.split("_")) - 1]) | |
selected_models[model_step] = model_file | |
file_list = sorted(selected_models.items(), key=lambda x: x[0]) | |
if (len(file_list) > 0): | |
file_list = file_list[0:len(file_list) - 1] | |
print("list of models: ", file_list) | |
for model_file in file_list: | |
model_file = model_file[1] | |
print("restoring: ", model_file) | |
saver.restore(sess, model_dir + "/" + model_file) | |
model_step = int( | |
model_file.split("_")[len(model_file.split("_")) - 1]) | |
print("evaluating on dev ", model_file, model_step) | |
evaluate(sess, dev_data, batch_size, graph, model_step) | |
else: | |
ckpt = tf.train.get_checkpoint_state(model_dir) | |
print("model dir: ", model_dir) | |
if (not (tf.gfile.IsDirectory(utility.FLAGS.output_dir))): | |
print("create dir: ", utility.FLAGS.output_dir) | |
tf.gfile.MkDir(utility.FLAGS.output_dir) | |
if (not (tf.gfile.IsDirectory(model_dir))): | |
print("create dir: ", model_dir) | |
tf.gfile.MkDir(model_dir) | |
Train(graph, utility, batch_size, train_data, sess, model_dir, | |
saver) | |
def main(args): | |
utility = Utility() | |
train_name = "random-split-1-train.examples" | |
dev_name = "random-split-1-dev.examples" | |
test_name = "pristine-unseen-tables.examples" | |
#load data | |
dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) | |
train_data, dev_data, test_data = dat.load() | |
utility.words = [] | |
utility.word_ids = {} | |
utility.reverse_word_ids = {} | |
#construct vocabulary | |
data_utils.construct_vocab(train_data, utility) | |
data_utils.construct_vocab(dev_data, utility, True) | |
data_utils.construct_vocab(test_data, utility, True) | |
data_utils.add_special_words(utility) | |
data_utils.perform_word_cutoff(utility) | |
#convert data to int format and pad the inputs | |
train_data = data_utils.complete_wiki_processing(train_data, utility, True) | |
dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) | |
test_data = data_utils.complete_wiki_processing(test_data, utility, False) | |
print("# train examples ", len(train_data)) | |
print("# dev examples ", len(dev_data)) | |
print("# test examples ", len(test_data)) | |
print("running open source") | |
#construct TF graph and train or evaluate | |
master(train_data, dev_data, utility) | |
if __name__ == "__main__": | |
tf.app.run() | |