Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Base class for voxel generation model.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import abc | |
import os | |
import numpy as np | |
from six.moves import xrange | |
import tensorflow as tf | |
import input_generator | |
import utils | |
slim = tf.contrib.slim | |
class Im2Vox(object): | |
"""Defines the voxel generation model.""" | |
__metaclass__ = abc.ABCMeta | |
def __init__(self, params): | |
self._params = params | |
def get_metrics(self, inputs, outputs): | |
"""Gets dictionaries from metrics to value `Tensors` & update `Tensors`.""" | |
pass | |
def get_loss(self, inputs, outputs): | |
pass | |
def get_regularization_loss(self, scopes): | |
pass | |
def set_params(self, params): | |
self._params = params | |
def get_inputs(self, | |
dataset_dir, | |
dataset_name, | |
split_name, | |
batch_size, | |
image_size, | |
vox_size, | |
is_training=True): | |
"""Loads data for a specified dataset and split.""" | |
del image_size, vox_size | |
with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)): | |
common_queue_min = 64 | |
common_queue_capacity = 256 | |
num_readers = 4 | |
inputs = input_generator.get( | |
dataset_dir, | |
dataset_name, | |
split_name, | |
shuffle=is_training, | |
num_readers=num_readers, | |
common_queue_min=common_queue_min, | |
common_queue_capacity=common_queue_capacity) | |
images, voxels = tf.train.batch( | |
[inputs['image'], inputs['voxel']], | |
batch_size=batch_size, | |
num_threads=8, | |
capacity=8 * batch_size, | |
name='batching_queues/%s/%s' % (dataset_name, split_name)) | |
outputs = dict() | |
outputs['images'] = images | |
outputs['voxels'] = voxels | |
outputs['num_samples'] = inputs['num_samples'] | |
return outputs | |
def preprocess(self, raw_inputs, step_size): | |
"""Selects the subset of viewpoints to train on.""" | |
(quantity, num_views) = raw_inputs['images'].get_shape().as_list()[:2] | |
inputs = dict() | |
inputs['voxels'] = raw_inputs['voxels'] | |
for k in xrange(step_size): | |
inputs['images_%d' % (k + 1)] = [] | |
inputs['matrix_%d' % (k + 1)] = [] | |
for n in xrange(quantity): | |
selected_views = np.random.choice(num_views, step_size, replace=False) | |
for k in xrange(step_size): | |
view_selected = selected_views[k] | |
inputs['images_%d' % | |
(k + 1)].append(raw_inputs['images'][n, view_selected, :, :, :]) | |
tf_matrix = self.get_transform_matrix(view_selected) | |
inputs['matrix_%d' % (k + 1)].append(tf_matrix) | |
for k in xrange(step_size): | |
inputs['images_%d' % (k + 1)] = tf.stack(inputs['images_%d' % (k + 1)]) | |
inputs['matrix_%d' % (k + 1)] = tf.stack(inputs['matrix_%d' % (k + 1)]) | |
return inputs | |
def get_init_fn(self, scopes): | |
"""Initialization assignment operator function used while training.""" | |
if not self._params.init_model: | |
return None | |
is_trainable = lambda x: x in tf.trainable_variables() | |
var_list = [] | |
for scope in scopes: | |
var_list.extend( | |
filter(is_trainable, tf.contrib.framework.get_model_variables(scope))) | |
init_assign_op, init_feed_dict = slim.assign_from_checkpoint( | |
self._params.init_model, var_list) | |
def init_assign_function(sess): | |
sess.run(init_assign_op, init_feed_dict) | |
return init_assign_function | |
def get_train_op_for_scope(self, loss, optimizer, scopes): | |
"""Train operation function for the given scope used file training.""" | |
is_trainable = lambda x: x in tf.trainable_variables() | |
var_list = [] | |
update_ops = [] | |
for scope in scopes: | |
var_list.extend( | |
filter(is_trainable, tf.contrib.framework.get_model_variables(scope))) | |
update_ops.extend(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)) | |
return slim.learning.create_train_op( | |
loss, | |
optimizer, | |
update_ops=update_ops, | |
variables_to_train=var_list, | |
clip_gradient_norm=self._params.clip_gradient_norm) | |
def write_disk_grid(self, | |
global_step, | |
log_dir, | |
input_images, | |
gt_projs, | |
pred_projs, | |
pred_voxels=None): | |
"""Function called by TF to save the prediction periodically.""" | |
summary_freq = self._params.save_every | |
def write_grid(input_images, gt_projs, pred_projs, pred_voxels, | |
global_step): | |
"""Native python function to call for writing images to files.""" | |
grid = _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels) | |
if global_step % summary_freq == 0: | |
img_path = os.path.join(log_dir, '%s.jpg' % str(global_step)) | |
utils.save_image(grid, img_path) | |
with open( | |
os.path.join(log_dir, 'pred_voxels_%s' % str(global_step)), | |
'w') as fout: | |
np.save(fout, pred_voxels) | |
with open( | |
os.path.join(log_dir, 'input_images_%s' % str(global_step)), | |
'w') as fout: | |
np.save(fout, input_images) | |
return grid | |
py_func_args = [ | |
input_images, gt_projs, pred_projs, pred_voxels, global_step | |
] | |
save_grid_op = tf.py_func(write_grid, py_func_args, [tf.uint8], | |
'wrtie_grid')[0] | |
slim.summaries.add_image_summary( | |
tf.expand_dims(save_grid_op, axis=0), name='grid_vis') | |
return save_grid_op | |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): | |
"""Build the visualization grid with py_func.""" | |
quantity, img_height, img_width = input_images.shape[:3] | |
for row in xrange(int(quantity / 3)): | |
for col in xrange(3): | |
index = row * 3 + col | |
input_img_ = input_images[index, :, :, :] | |
gt_proj_ = gt_projs[index, :, :, :] | |
pred_proj_ = pred_projs[index, :, :, :] | |
pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) | |
pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) | |
if col == 0: | |
tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], | |
1) | |
else: | |
tmp_ = np.concatenate( | |
[tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) | |
if row == 0: | |
out_grid = tmp_ | |
else: | |
out_grid = np.concatenate([out_grid, tmp_], 0) | |
out_grid = out_grid.astype(np.uint8) | |
return out_grid | |