NCTC / models /research /ptn /nets /ptn_encoder.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
2.06 kB
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training/Pretraining encoder as used in PTN (NIPS16)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
def _preprocess(images):
return images * 2 - 1
def model(images, params, is_training):
"""Model encoding the images into view-invariant embedding."""
del is_training # Unused
image_size = images.get_shape().as_list()[1]
f_dim = params.f_dim
fc_dim = params.fc_dim
z_dim = params.z_dim
outputs = dict()
images = _preprocess(images)
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)):
h0 = slim.conv2d(images, f_dim, [5, 5], stride=2, activation_fn=tf.nn.relu)
h1 = slim.conv2d(h0, f_dim * 2, [5, 5], stride=2, activation_fn=tf.nn.relu)
h2 = slim.conv2d(h1, f_dim * 4, [5, 5], stride=2, activation_fn=tf.nn.relu)
# Reshape layer
s8 = image_size // 8
h2 = tf.reshape(h2, [-1, s8 * s8 * f_dim * 4])
h3 = slim.fully_connected(h2, fc_dim, activation_fn=tf.nn.relu)
h4 = slim.fully_connected(h3, fc_dim, activation_fn=tf.nn.relu)
outputs['ids'] = slim.fully_connected(h4, z_dim, activation_fn=tf.nn.relu)
outputs['poses'] = slim.fully_connected(h4, z_dim, activation_fn=tf.nn.relu)
return outputs