Spaces:
Sleeping
Sleeping
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for run_training.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import time | |
from absl import flags | |
from absl.testing import absltest | |
from absl.testing import flagsaver | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf | |
from google.protobuf import text_format | |
import run_training | |
from protos import seq2label_pb2 | |
import test_utils | |
FLAGS = flags.FLAGS | |
class RunTrainingTest(parameterized.TestCase): | |
def test_wait_until(self, wait_sec): | |
end_time = time.time() + wait_sec | |
run_training.wait_until(end_time) | |
self.assertEqual(round(time.time() - end_time), 0) | |
def test_update_measures(self, measures, new_measures, loss, max_loss, | |
expected): | |
run_training.update_measures(measures, new_measures, loss, max_loss) | |
self.assertEqual(measures, expected) | |
def test_write_measures(self): | |
init_time = time.time() | |
measures = { | |
'global_step': 311448, | |
'train_loss': np.float32(18.36), | |
'train_weighted_accuracy': np.float32(0.3295), | |
'train_accuracy': 0.8243, | |
'is_infeasible': False | |
} | |
tmp_path = os.path.join(FLAGS.test_tmpdir, 'measures.pbtxt') | |
run_training.write_measures(measures, tmp_path, init_time) | |
experiment_measures = seq2label_pb2.Seq2LabelExperimentMeasures() | |
with tf.gfile.Open(tmp_path) as f: | |
text_format.Parse(f.read(), experiment_measures) | |
self.assertEqual(experiment_measures.checkpoint_path, tmp_path) | |
self.assertFalse(experiment_measures.experiment_infeasible) | |
self.assertEqual(experiment_measures.steps, measures['global_step']) | |
self.assertGreater(experiment_measures.wall_time, 0) | |
self.assertEqual(len(experiment_measures.measures), 3) | |
for measure in experiment_measures.measures: | |
self.assertAlmostEqual(measure.value, measures[measure.name]) | |
def test_run_training(self, targets): | |
"""Tests whether the training loop can be run successfully. | |
Generates test input files and runs the main driving code. | |
Args: | |
targets: the targets to train on. | |
""" | |
# Create test input and metadata files. | |
num_examples, read_len = 20, 5 | |
train_file = test_utils.create_tmp_train_file(num_examples, read_len) | |
metadata_path = test_utils.create_tmp_metadata(num_examples, read_len) | |
# Check that the training loop runs as expected. | |
logdir = os.path.join(FLAGS.test_tmpdir, 'train:{}'.format(len(targets))) | |
with flagsaver.flagsaver( | |
train_files=train_file, | |
metadata_path=metadata_path, | |
targets=targets, | |
logdir=logdir, | |
hparams='train_steps=10,min_read_length=5', | |
batch_size=10): | |
run_training.main(FLAGS) | |
# Check training loop ran by confirming existence of a checkpoint file. | |
self.assertIsNotNone(tf.train.latest_checkpoint(FLAGS.logdir)) | |
# Check training loop ran by confiming existence of a measures file. | |
self.assertTrue( | |
os.path.exists(os.path.join(FLAGS.logdir, 'measures.pbtxt'))) | |
if __name__ == '__main__': | |
absltest.main() | |