NCTC / models /research /adv_imagenet_models /eval_on_adversarial.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script which evaluates model on adversarial examples."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import imagenet
import inception_resnet_v2
import tensorflow as tf
from tensorflow.contrib.slim.nets import inception
slim = tf.contrib.slim
tf.app.flags.DEFINE_integer(
'batch_size', 50, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer(
'max_num_batches', None,
'Max number of batches to evaluate by default use all.')
tf.app.flags.DEFINE_string(
'master', '', 'The address of the TensorFlow master to use.')
tf.app.flags.DEFINE_string(
'checkpoint_path', '/tmp/tfmodel/',
'The directory where the model was written to or an absolute path to a '
'checkpoint file.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 4,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_string(
'split_name', 'validation', 'The name of the train/test split.')
tf.app.flags.DEFINE_string(
'dataset_dir', None, 'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_string(
'model_name', 'inception_v3',
'Name of the model to use, either "inception_v3" or "inception_resnet_v2"')
tf.app.flags.DEFINE_float(
'moving_average_decay', None,
'The decay to use for the moving average.'
'If left as None, then moving averages are not used.')
tf.app.flags.DEFINE_string(
'adversarial_method', 'none',
'What kind of adversarial examples to use for evaluation. '
'Could be one of: "none", "stepll", "stepllnoise".')
tf.app.flags.DEFINE_float(
'adversarial_eps', 0.0,
'Size of adversarial perturbation in range [0, 255].')
FLAGS = tf.app.flags.FLAGS
IMAGE_SIZE = 299
NUM_CLASSES = 1001
def preprocess_for_eval(image, height, width,
central_fraction=0.875, scope=None):
"""Prepare one image for evaluation.
If height and width are specified it would output an image with that size by
applying resize_bilinear.
If central_fraction is specified it would crop the central fraction of the
input image.
Args:
image: 3-D Tensor of image. If dtype is tf.float32 then the range should be
[0, 1], otherwise it would converted to tf.float32 assuming that the range
is [0, MAX], where MAX is largest positive representable number for
int(8/16/32) data type (see `tf.image.convert_image_dtype` for details)
height: integer
width: integer
central_fraction: Optional Float, fraction of the image to crop.
scope: Optional scope for name_scope.
Returns:
3-D float Tensor of prepared image.
"""
with tf.name_scope(scope, 'eval_image', [image, height, width]):
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# Crop the central region of the image with an area containing 87.5% of
# the original image.
if central_fraction:
image = tf.image.central_crop(image, central_fraction=central_fraction)
if height and width:
# Resize the image to the specified height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [height, width],
align_corners=False)
image = tf.squeeze(image, [0])
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
def create_model(x, reuse=None):
"""Create model graph.
Args:
x: input images
reuse: reuse parameter which will be passed to underlying variable scopes.
Should be None first call and True every subsequent call.
Returns:
(logits, end_points) - tuple of model logits and enpoints
Raises:
ValueError: if model type specified by --model_name flag is invalid.
"""
if FLAGS.model_name == 'inception_v3':
with slim.arg_scope(inception.inception_v3_arg_scope()):
return inception.inception_v3(
x, num_classes=NUM_CLASSES, is_training=False, reuse=reuse)
elif FLAGS.model_name == 'inception_resnet_v2':
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
return inception_resnet_v2.inception_resnet_v2(
x, num_classes=NUM_CLASSES, is_training=False, reuse=reuse)
else:
raise ValueError('Invalid model name: %s' % (FLAGS.model_name))
def step_target_class_adversarial_images(x, eps, one_hot_target_class):
"""Base code for one step towards target class methods.
Args:
x: source images
eps: size of adversarial perturbation
one_hot_target_class: one hot encoded target classes for all images
Returns:
tensor with adversarial images
"""
logits, end_points = create_model(x, reuse=True)
cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class,
logits,
label_smoothing=0.1,
weights=1.0)
cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class,
end_points['AuxLogits'],
label_smoothing=0.1,
weights=0.4)
x_adv = x - eps * tf.sign(tf.gradients(cross_entropy, x)[0])
x_adv = tf.clip_by_value(x_adv, -1.0, 1.0)
return tf.stop_gradient(x_adv)
def stepll_adversarial_images(x, eps):
"""One step towards least likely class (Step L.L.) adversarial examples.
This method is an alternative to FGSM which does not use true classes.
Method is described in the "Adversarial Machine Learning at Scale" paper,
https://arxiv.org/abs/1611.01236
Args:
x: source images
eps: size of adversarial perturbation
Returns:
adversarial images
"""
logits, _ = create_model(x, reuse=True)
least_likely_class = tf.argmin(logits, 1)
one_hot_ll_class = tf.one_hot(least_likely_class, NUM_CLASSES)
return step_target_class_adversarial_images(x, eps, one_hot_ll_class)
def stepllnoise_adversarial_images(x, eps):
"""Step L.L. with noise method.
This is an imporvement of Step L.L. method. This method is better against
adversarially trained models which learn to mask gradient.
Method is described in the section "New randomized one shot attack" of
"Ensemble Adversarial Training: Attacks and Defenses" paper,
https://arxiv.org/abs/1705.07204
Args:
x: source images
eps: size of adversarial perturbation
Returns:
adversarial images
"""
logits, _ = create_model(x, reuse=True)
least_likely_class = tf.argmin(logits, 1)
one_hot_ll_class = tf.one_hot(least_likely_class, NUM_CLASSES)
x_noise = x + eps / 2 * tf.sign(tf.random_normal(x.shape))
return step_target_class_adversarial_images(x_noise, eps / 2,
one_hot_ll_class)
def get_input_images(dataset_images):
"""Gets input images for the evaluation.
Args:
dataset_images: tensor with dataset images
Returns:
tensor with input images, which is either dataset images or adversarial
images.
Raises:
ValueError: if adversarial method specified by --adversarial_method flag
is invalid.
"""
# adversarial_eps defines max difference of values of pixels if
# pixels are in range [0, 255]. However values of dataset pixels are
# in range [-1, 1], so converting epsilon.
eps = FLAGS.adversarial_eps / 255 * 2.0
if FLAGS.adversarial_method == 'stepll':
return stepll_adversarial_images(dataset_images, eps)
elif FLAGS.adversarial_method == 'stepllnoise':
return stepllnoise_adversarial_images(dataset_images, eps)
elif FLAGS.adversarial_method == 'none':
return dataset_images
else:
raise ValueError('Invalid adversarial method: %s'
% (FLAGS.adversarial_method))
def main(_):
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
tf_global_step = tf.train.get_or_create_global_step()
###################
# Prepare dataset #
###################
dataset = imagenet.get_split(FLAGS.split_name, FLAGS.dataset_dir)
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
shuffle=False,
common_queue_capacity=2 * FLAGS.batch_size,
common_queue_min=FLAGS.batch_size)
[dataset_image, label] = provider.get(['image', 'label'])
dataset_image = preprocess_for_eval(dataset_image, IMAGE_SIZE, IMAGE_SIZE)
dataset_images, labels = tf.train.batch(
[dataset_image, label],
batch_size=FLAGS.batch_size,
num_threads=FLAGS.num_preprocessing_threads,
capacity=5 * FLAGS.batch_size)
########################################
# Define the model and input exampeles #
########################################
create_model(tf.placeholder(tf.float32, shape=dataset_images.shape))
input_images = get_input_images(dataset_images)
logits, _ = create_model(input_images, reuse=True)
if FLAGS.moving_average_decay > 0:
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, tf_global_step)
variables_to_restore = variable_averages.variables_to_restore(
slim.get_model_variables())
variables_to_restore[tf_global_step.op.name] = tf_global_step
else:
variables_to_restore = slim.get_variables_to_restore()
######################
# Define the metrics #
######################
predictions = tf.argmax(logits, 1)
labels = tf.squeeze(labels)
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
'Accuracy': slim.metrics.streaming_accuracy(predictions, labels),
'Recall_5': slim.metrics.streaming_sparse_recall_at_k(
logits, tf.reshape(labels, [-1, 1]), 5),
})
######################
# Run evaluation #
######################
if FLAGS.max_num_batches:
num_batches = FLAGS.max_num_batches
else:
# This ensures that we make a single pass over all of the data.
num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))
if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
else:
checkpoint_path = FLAGS.checkpoint_path
tf.logging.info('Evaluating %s' % checkpoint_path)
top1_accuracy, top5_accuracy = slim.evaluation.evaluate_once(
master=FLAGS.master,
checkpoint_path=checkpoint_path,
logdir=None,
summary_op=None,
num_evals=num_batches,
eval_op=list(names_to_updates.values()),
final_op=[names_to_values['Accuracy'], names_to_values['Recall_5']],
variables_to_restore=variables_to_restore)
print('Top1 Accuracy: ', top1_accuracy)
print('Top5 Accuracy: ', top5_accuracy)
if __name__ == '__main__':
tf.app.run()