Spaces:
Running
Running
#!/usr/bin/python | |
# | |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
r"""Neural Network Image Compression Encoder. | |
Compresses an image to a binarized numpy array. The image must be padded to a | |
multiple of 32 pixels in height and width. | |
Example usage: | |
python encoder.py --input_image=/your/image/here.png \ | |
--output_codes=output_codes.pkl --iteration=15 --model=residual_gru.pb | |
""" | |
import io | |
import os | |
import numpy as np | |
import tensorflow as tf | |
tf.flags.DEFINE_string('input_image', None, 'Location of input image. We rely ' | |
'on tf.image to decode the image, so only PNG and JPEG ' | |
'formats are currently supported.') | |
tf.flags.DEFINE_integer('iteration', 15, 'Quality level for encoding image. ' | |
'Must be between 0 and 15 inclusive.') | |
tf.flags.DEFINE_string('output_codes', None, 'File to save output encoding.') | |
tf.flags.DEFINE_string('model', None, 'Location of compression model.') | |
FLAGS = tf.flags.FLAGS | |
def get_output_tensor_names(): | |
name_list = ['GruBinarizer/SignBinarizer/Sign:0'] | |
for i in range(1, 16): | |
name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i)) | |
return name_list | |
def main(_): | |
if (FLAGS.input_image is None or FLAGS.output_codes is None or | |
FLAGS.model is None): | |
print('\nUsage: python encoder.py --input_image=/your/image/here.png ' | |
'--output_codes=output_codes.pkl --iteration=15 ' | |
'--model=residual_gru.pb\n\n') | |
return | |
if FLAGS.iteration < 0 or FLAGS.iteration > 15: | |
print('\n--iteration must be between 0 and 15 inclusive.\n') | |
return | |
with tf.gfile.FastGFile(FLAGS.input_image, 'rb') as input_image: | |
input_image_str = input_image.read() | |
with tf.Graph().as_default() as graph: | |
# Load the inference model for encoding. | |
with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(model_file.read()) | |
_ = tf.import_graph_def(graph_def, name='') | |
input_tensor = graph.get_tensor_by_name('Placeholder:0') | |
outputs = [graph.get_tensor_by_name(name) for name in | |
get_output_tensor_names()] | |
input_image = tf.placeholder(tf.string) | |
_, ext = os.path.splitext(FLAGS.input_image) | |
if ext == '.png': | |
decoded_image = tf.image.decode_png(input_image, channels=3) | |
elif ext == '.jpeg' or ext == '.jpg': | |
decoded_image = tf.image.decode_jpeg(input_image, channels=3) | |
else: | |
assert False, 'Unsupported file format {}'.format(ext) | |
decoded_image = tf.expand_dims(decoded_image, 0) | |
with tf.Session(graph=graph) as sess: | |
img_array = sess.run(decoded_image, feed_dict={input_image: | |
input_image_str}) | |
results = sess.run(outputs, feed_dict={input_tensor: img_array}) | |
results = results[0:FLAGS.iteration + 1] | |
int_codes = np.asarray([x.astype(np.int8) for x in results]) | |
# Convert int codes to binary. | |
int_codes = (int_codes + 1)//2 | |
export = np.packbits(int_codes.reshape(-1)) | |
output = io.BytesIO() | |
np.savez_compressed(output, shape=int_codes.shape, codes=export) | |
with tf.gfile.FastGFile(FLAGS.output_codes, 'w') as code_file: | |
code_file.write(output.getvalue()) | |
if __name__ == '__main__': | |
tf.app.run() | |