Spaces:
Running
Running
#!/usr/bin/python | |
# | |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Python implementation of MS-SSIM. | |
Usage: | |
python msssim.py --original_image=original.png --compared_image=distorted.png | |
""" | |
import numpy as np | |
from scipy import signal | |
from scipy.ndimage.filters import convolve | |
import tensorflow as tf | |
tf.flags.DEFINE_string('original_image', None, 'Path to PNG image.') | |
tf.flags.DEFINE_string('compared_image', None, 'Path to PNG image.') | |
FLAGS = tf.flags.FLAGS | |
def _FSpecialGauss(size, sigma): | |
"""Function to mimic the 'fspecial' gaussian MATLAB function.""" | |
radius = size // 2 | |
offset = 0.0 | |
start, stop = -radius, radius + 1 | |
if size % 2 == 0: | |
offset = 0.5 | |
stop -= 1 | |
x, y = np.mgrid[offset + start:stop, offset + start:stop] | |
assert len(x) == size | |
g = np.exp(-((x**2 + y**2)/(2.0 * sigma**2))) | |
return g / g.sum() | |
def _SSIMForMultiScale(img1, img2, max_val=255, filter_size=11, | |
filter_sigma=1.5, k1=0.01, k2=0.03): | |
"""Return the Structural Similarity Map between `img1` and `img2`. | |
This function attempts to match the functionality of ssim_index_new.m by | |
Zhou Wang: http://www.cns.nyu.edu/~lcv/ssim/msssim.zip | |
Arguments: | |
img1: Numpy array holding the first RGB image batch. | |
img2: Numpy array holding the second RGB image batch. | |
max_val: the dynamic range of the images (i.e., the difference between the | |
maximum the and minimum allowed values). | |
filter_size: Size of blur kernel to use (will be reduced for small images). | |
filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced | |
for small images). | |
k1: Constant used to maintain stability in the SSIM calculation (0.01 in | |
the original paper). | |
k2: Constant used to maintain stability in the SSIM calculation (0.03 in | |
the original paper). | |
Returns: | |
Pair containing the mean SSIM and contrast sensitivity between `img1` and | |
`img2`. | |
Raises: | |
RuntimeError: If input images don't have the same shape or don't have four | |
dimensions: [batch_size, height, width, depth]. | |
""" | |
if img1.shape != img2.shape: | |
raise RuntimeError('Input images must have the same shape (%s vs. %s).', | |
img1.shape, img2.shape) | |
if img1.ndim != 4: | |
raise RuntimeError('Input images must have four dimensions, not %d', | |
img1.ndim) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
_, height, width, _ = img1.shape | |
# Filter size can't be larger than height or width of images. | |
size = min(filter_size, height, width) | |
# Scale down sigma if a smaller filter size is used. | |
sigma = size * filter_sigma / filter_size if filter_size else 0 | |
if filter_size: | |
window = np.reshape(_FSpecialGauss(size, sigma), (1, size, size, 1)) | |
mu1 = signal.fftconvolve(img1, window, mode='valid') | |
mu2 = signal.fftconvolve(img2, window, mode='valid') | |
sigma11 = signal.fftconvolve(img1 * img1, window, mode='valid') | |
sigma22 = signal.fftconvolve(img2 * img2, window, mode='valid') | |
sigma12 = signal.fftconvolve(img1 * img2, window, mode='valid') | |
else: | |
# Empty blur kernel so no need to convolve. | |
mu1, mu2 = img1, img2 | |
sigma11 = img1 * img1 | |
sigma22 = img2 * img2 | |
sigma12 = img1 * img2 | |
mu11 = mu1 * mu1 | |
mu22 = mu2 * mu2 | |
mu12 = mu1 * mu2 | |
sigma11 -= mu11 | |
sigma22 -= mu22 | |
sigma12 -= mu12 | |
# Calculate intermediate values used by both ssim and cs_map. | |
c1 = (k1 * max_val) ** 2 | |
c2 = (k2 * max_val) ** 2 | |
v1 = 2.0 * sigma12 + c2 | |
v2 = sigma11 + sigma22 + c2 | |
ssim = np.mean((((2.0 * mu12 + c1) * v1) / ((mu11 + mu22 + c1) * v2))) | |
cs = np.mean(v1 / v2) | |
return ssim, cs | |
def MultiScaleSSIM(img1, img2, max_val=255, filter_size=11, filter_sigma=1.5, | |
k1=0.01, k2=0.03, weights=None): | |
"""Return the MS-SSIM score between `img1` and `img2`. | |
This function implements Multi-Scale Structural Similarity (MS-SSIM) Image | |
Quality Assessment according to Zhou Wang's paper, "Multi-scale structural | |
similarity for image quality assessment" (2003). | |
Link: https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf | |
Author's MATLAB implementation: | |
http://www.cns.nyu.edu/~lcv/ssim/msssim.zip | |
Arguments: | |
img1: Numpy array holding the first RGB image batch. | |
img2: Numpy array holding the second RGB image batch. | |
max_val: the dynamic range of the images (i.e., the difference between the | |
maximum the and minimum allowed values). | |
filter_size: Size of blur kernel to use (will be reduced for small images). | |
filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced | |
for small images). | |
k1: Constant used to maintain stability in the SSIM calculation (0.01 in | |
the original paper). | |
k2: Constant used to maintain stability in the SSIM calculation (0.03 in | |
the original paper). | |
weights: List of weights for each level; if none, use five levels and the | |
weights from the original paper. | |
Returns: | |
MS-SSIM score between `img1` and `img2`. | |
Raises: | |
RuntimeError: If input images don't have the same shape or don't have four | |
dimensions: [batch_size, height, width, depth]. | |
""" | |
if img1.shape != img2.shape: | |
raise RuntimeError('Input images must have the same shape (%s vs. %s).', | |
img1.shape, img2.shape) | |
if img1.ndim != 4: | |
raise RuntimeError('Input images must have four dimensions, not %d', | |
img1.ndim) | |
# Note: default weights don't sum to 1.0 but do match the paper / matlab code. | |
weights = np.array(weights if weights else | |
[0.0448, 0.2856, 0.3001, 0.2363, 0.1333]) | |
levels = weights.size | |
downsample_filter = np.ones((1, 2, 2, 1)) / 4.0 | |
im1, im2 = [x.astype(np.float64) for x in [img1, img2]] | |
mssim = np.array([]) | |
mcs = np.array([]) | |
for _ in range(levels): | |
ssim, cs = _SSIMForMultiScale( | |
im1, im2, max_val=max_val, filter_size=filter_size, | |
filter_sigma=filter_sigma, k1=k1, k2=k2) | |
mssim = np.append(mssim, ssim) | |
mcs = np.append(mcs, cs) | |
filtered = [convolve(im, downsample_filter, mode='reflect') | |
for im in [im1, im2]] | |
im1, im2 = [x[:, ::2, ::2, :] for x in filtered] | |
return (np.prod(mcs[0:levels-1] ** weights[0:levels-1]) * | |
(mssim[levels-1] ** weights[levels-1])) | |
def main(_): | |
if FLAGS.original_image is None or FLAGS.compared_image is None: | |
print('\nUsage: python msssim.py --original_image=original.png ' | |
'--compared_image=distorted.png\n\n') | |
return | |
if not tf.gfile.Exists(FLAGS.original_image): | |
print('\nCannot find --original_image.\n') | |
return | |
if not tf.gfile.Exists(FLAGS.compared_image): | |
print('\nCannot find --compared_image.\n') | |
return | |
with tf.gfile.FastGFile(FLAGS.original_image) as image_file: | |
img1_str = image_file.read('rb') | |
with tf.gfile.FastGFile(FLAGS.compared_image) as image_file: | |
img2_str = image_file.read('rb') | |
input_img = tf.placeholder(tf.string) | |
decoded_image = tf.expand_dims(tf.image.decode_png(input_img, channels=3), 0) | |
with tf.Session() as sess: | |
img1 = sess.run(decoded_image, feed_dict={input_img: img1_str}) | |
img2 = sess.run(decoded_image, feed_dict={input_img: img2_str}) | |
print((MultiScaleSSIM(img1, img2, max_val=255))) | |
if __name__ == '__main__': | |
tf.app.run() | |