Spaces:
Runtime error
Runtime error
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
# | |
# Script to download and preprocess the ADE20K dataset. | |
# | |
# Usage: | |
# bash ./download_and_convert_ade20k.sh | |
# | |
# The folder structure is assumed to be: | |
# + datasets | |
# - build_data.py | |
# - build_ade20k_data.py | |
# - download_and_convert_ade20k.sh | |
# + ADE20K | |
# + tfrecord | |
# + ADEChallengeData2016 | |
# + annotations | |
# + training | |
# + validation | |
# + images | |
# + training | |
# + validation | |
# Exit immediately if a command exits with a non-zero status. | |
set -e | |
CURRENT_DIR=$(pwd) | |
WORK_DIR="./ADE20K" | |
mkdir -p "${WORK_DIR}" | |
cd "${WORK_DIR}" | |
# Helper function to download and unpack ADE20K dataset. | |
download_and_uncompress() { | |
local BASE_URL=${1} | |
local FILENAME=${2} | |
if [ ! -f "${FILENAME}" ]; then | |
echo "Downloading ${FILENAME} to ${WORK_DIR}" | |
wget -nd -c "${BASE_URL}/${FILENAME}" | |
fi | |
echo "Uncompressing ${FILENAME}" | |
unzip "${FILENAME}" | |
} | |
# Download the images. | |
BASE_URL="http://data.csail.mit.edu/places/ADEchallenge" | |
FILENAME="ADEChallengeData2016.zip" | |
download_and_uncompress "${BASE_URL}" "${FILENAME}" | |
cd "${CURRENT_DIR}" | |
# Root path for ADE20K dataset. | |
ADE20K_ROOT="${WORK_DIR}/ADEChallengeData2016" | |
# Build TFRecords of the dataset. | |
# First, create output directory for storing TFRecords. | |
OUTPUT_DIR="${WORK_DIR}/tfrecord" | |
mkdir -p "${OUTPUT_DIR}" | |
echo "Converting ADE20K dataset..." | |
python ./build_ade20k_data.py \ | |
--train_image_folder="${ADE20K_ROOT}/images/training/" \ | |
--train_image_label_folder="${ADE20K_ROOT}/annotations/training/" \ | |
--val_image_folder="${ADE20K_ROOT}/images/validation/" \ | |
--val_image_label_folder="${ADE20K_ROOT}/annotations/validation/" \ | |
--output_dir="${OUTPUT_DIR}" | |