NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import print_function
import os
import h5py
import json
import numpy as np
import tensorflow as tf
def log_sum_exp(x_k):
"""Computes log \sum exp in a numerically stable way.
log ( sum_i exp(x_i) )
log ( sum_i exp(x_i - m + m) ), with m = max(x_i)
log ( sum_i exp(x_i - m)*exp(m) )
log ( sum_i exp(x_i - m) + m
Args:
x_k - k -dimensional list of arguments to log_sum_exp.
Returns:
log_sum_exp of the arguments.
"""
m = tf.reduce_max(x_k)
x1_k = x_k - m
u_k = tf.exp(x1_k)
z = tf.reduce_sum(u_k)
return tf.log(z) + m
def linear(x, out_size, do_bias=True, alpha=1.0, identity_if_possible=False,
normalized=False, name=None, collections=None):
"""Linear (affine) transformation, y = x W + b, for a variety of
configurations.
Args:
x: input The tensor to tranformation.
out_size: The integer size of non-batch output dimension.
do_bias (optional): Add a learnable bias vector to the operation.
alpha (optional): A multiplicative scaling for the weight initialization
of the matrix, in the form \alpha * 1/\sqrt{x.shape[1]}.
identity_if_possible (optional): just return identity,
if x.shape[1] == out_size.
normalized (optional): Option to divide out by the norms of the rows of W.
name (optional): The name prefix to add to variables.
collections (optional): List of additional collections. (Placed in
tf.GraphKeys.GLOBAL_VARIABLES already, so no need for that.)
Returns:
In the equation, y = x W + b, returns the tensorflow op that yields y.
"""
in_size = int(x.get_shape()[1]) # from Dimension(10) -> 10
stddev = alpha/np.sqrt(float(in_size))
mat_init = tf.random_normal_initializer(0.0, stddev)
wname = (name + "/W") if name else "/W"
if identity_if_possible and in_size == out_size:
# Sometimes linear layers are nothing more than size adapters.
return tf.identity(x, name=(wname+'_ident'))
W,b = init_linear(in_size, out_size, do_bias=do_bias, alpha=alpha,
normalized=normalized, name=name, collections=collections)
if do_bias:
return tf.matmul(x, W) + b
else:
return tf.matmul(x, W)
def init_linear(in_size, out_size, do_bias=True, mat_init_value=None,
bias_init_value=None, alpha=1.0, identity_if_possible=False,
normalized=False, name=None, collections=None, trainable=True):
"""Linear (affine) transformation, y = x W + b, for a variety of
configurations.
Args:
in_size: The integer size of the non-batc input dimension. [(x),y]
out_size: The integer size of non-batch output dimension. [x,(y)]
do_bias (optional): Add a (learnable) bias vector to the operation,
if false, b will be None
mat_init_value (optional): numpy constant for matrix initialization, if None
, do random, with additional parameters.
alpha (optional): A multiplicative scaling for the weight initialization
of the matrix, in the form \alpha * 1/\sqrt{x.shape[1]}.
identity_if_possible (optional): just return identity,
if x.shape[1] == out_size.
normalized (optional): Option to divide out by the norms of the rows of W.
name (optional): The name prefix to add to variables.
collections (optional): List of additional collections. (Placed in
tf.GraphKeys.GLOBAL_VARIABLES already, so no need for that.)
Returns:
In the equation, y = x W + b, returns the pair (W, b).
"""
if mat_init_value is not None and mat_init_value.shape != (in_size, out_size):
raise ValueError(
'Provided mat_init_value must have shape [%d, %d].'%(in_size, out_size))
if bias_init_value is not None and bias_init_value.shape != (1,out_size):
raise ValueError(
'Provided bias_init_value must have shape [1,%d].'%(out_size,))
if mat_init_value is None:
stddev = alpha/np.sqrt(float(in_size))
mat_init = tf.random_normal_initializer(0.0, stddev)
wname = (name + "/W") if name else "/W"
if identity_if_possible and in_size == out_size:
return (tf.constant(np.eye(in_size).astype(np.float32)),
tf.zeros(in_size))
# Note the use of get_variable vs. tf.Variable. this is because get_variable
# does not allow the initialization of the variable with a value.
if normalized:
w_collections = [tf.GraphKeys.GLOBAL_VARIABLES, "norm-variables"]
if collections:
w_collections += collections
if mat_init_value is not None:
w = tf.Variable(mat_init_value, name=wname, collections=w_collections,
trainable=trainable)
else:
w = tf.get_variable(wname, [in_size, out_size], initializer=mat_init,
collections=w_collections, trainable=trainable)
w = tf.nn.l2_normalize(w, dim=0) # x W, so xW_j = \sum_i x_bi W_ij
else:
w_collections = [tf.GraphKeys.GLOBAL_VARIABLES]
if collections:
w_collections += collections
if mat_init_value is not None:
w = tf.Variable(mat_init_value, name=wname, collections=w_collections,
trainable=trainable)
else:
w = tf.get_variable(wname, [in_size, out_size], initializer=mat_init,
collections=w_collections, trainable=trainable)
b = None
if do_bias:
b_collections = [tf.GraphKeys.GLOBAL_VARIABLES]
if collections:
b_collections += collections
bname = (name + "/b") if name else "/b"
if bias_init_value is None:
b = tf.get_variable(bname, [1, out_size],
initializer=tf.zeros_initializer(),
collections=b_collections,
trainable=trainable)
else:
b = tf.Variable(bias_init_value, name=bname,
collections=b_collections,
trainable=trainable)
return (w, b)
def write_data(data_fname, data_dict, use_json=False, compression=None):
"""Write data in HD5F format.
Args:
data_fname: The filename of teh file in which to write the data.
data_dict: The dictionary of data to write. The keys are strings
and the values are numpy arrays.
use_json (optional): human readable format for simple items
compression (optional): The compression to use for h5py (disabled by
default because the library borks on scalars, otherwise try 'gzip').
"""
dir_name = os.path.dirname(data_fname)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
if use_json:
the_file = open(data_fname,'wb')
json.dump(data_dict, the_file)
the_file.close()
else:
try:
with h5py.File(data_fname, 'w') as hf:
for k, v in data_dict.items():
clean_k = k.replace('/', '_')
if clean_k is not k:
print('Warning: saving variable with name: ', k, ' as ', clean_k)
else:
print('Saving variable with name: ', clean_k)
hf.create_dataset(clean_k, data=v, compression=compression)
except IOError:
print("Cannot open %s for writing.", data_fname)
raise
def read_data(data_fname):
""" Read saved data in HDF5 format.
Args:
data_fname: The filename of the file from which to read the data.
Returns:
A dictionary whose keys will vary depending on dataset (but should
always contain the keys 'train_data' and 'valid_data') and whose
values are numpy arrays.
"""
try:
with h5py.File(data_fname, 'r') as hf:
data_dict = {k: np.array(v) for k, v in hf.items()}
return data_dict
except IOError:
print("Cannot open %s for reading." % data_fname)
raise
def write_datasets(data_path, data_fname_stem, dataset_dict, compression=None):
"""Write datasets in HD5F format.
This function assumes the dataset_dict is a mapping ( string ->
to data_dict ). It calls write_data for each data dictionary,
post-fixing the data filename with the key of the dataset.
Args:
data_path: The path to the save directory.
data_fname_stem: The filename stem of the file in which to write the data.
dataset_dict: The dictionary of datasets. The keys are strings
and the values data dictionaries (str -> numpy arrays) associations.
compression (optional): The compression to use for h5py (disabled by
default because the library borks on scalars, otherwise try 'gzip').
"""
full_name_stem = os.path.join(data_path, data_fname_stem)
for s, data_dict in dataset_dict.items():
write_data(full_name_stem + "_" + s, data_dict, compression=compression)
def read_datasets(data_path, data_fname_stem):
"""Read dataset sin HD5F format.
This function assumes the dataset_dict is a mapping ( string ->
to data_dict ). It calls write_data for each data dictionary,
post-fixing the data filename with the key of the dataset.
Args:
data_path: The path to the save directory.
data_fname_stem: The filename stem of the file in which to write the data.
"""
dataset_dict = {}
fnames = os.listdir(data_path)
print ('loading data from ' + data_path + ' with stem ' + data_fname_stem)
for fname in fnames:
if fname.startswith(data_fname_stem):
data_dict = read_data(os.path.join(data_path,fname))
idx = len(data_fname_stem) + 1
key = fname[idx:]
data_dict['data_dim'] = data_dict['train_data'].shape[2]
data_dict['num_steps'] = data_dict['train_data'].shape[1]
dataset_dict[key] = data_dict
if len(dataset_dict) == 0:
raise ValueError("Failed to load any datasets, are you sure that the "
"'--data_dir' and '--data_filename_stem' flag values "
"are correct?")
print (str(len(dataset_dict)) + ' datasets loaded')
return dataset_dict
# NUMPY utility functions
def list_t_bxn_to_list_b_txn(values_t_bxn):
"""Convert a length T list of BxN numpy tensors of length B list of TxN numpy
tensors.
Args:
values_t_bxn: The length T list of BxN numpy tensors.
Returns:
The length B list of TxN numpy tensors.
"""
T = len(values_t_bxn)
B, N = values_t_bxn[0].shape
values_b_txn = []
for b in range(B):
values_pb_txn = np.zeros([T,N])
for t in range(T):
values_pb_txn[t,:] = values_t_bxn[t][b,:]
values_b_txn.append(values_pb_txn)
return values_b_txn
def list_t_bxn_to_tensor_bxtxn(values_t_bxn):
"""Convert a length T list of BxN numpy tensors to single numpy tensor with
shape BxTxN.
Args:
values_t_bxn: The length T list of BxN numpy tensors.
Returns:
values_bxtxn: The BxTxN numpy tensor.
"""
T = len(values_t_bxn)
B, N = values_t_bxn[0].shape
values_bxtxn = np.zeros([B,T,N])
for t in range(T):
values_bxtxn[:,t,:] = values_t_bxn[t]
return values_bxtxn
def tensor_bxtxn_to_list_t_bxn(tensor_bxtxn):
"""Convert a numpy tensor with shape BxTxN to a length T list of numpy tensors
with shape BxT.
Args:
tensor_bxtxn: The BxTxN numpy tensor.
Returns:
A length T list of numpy tensors with shape BxT.
"""
values_t_bxn = []
B, T, N = tensor_bxtxn.shape
for t in range(T):
values_t_bxn.append(np.squeeze(tensor_bxtxn[:,t,:]))
return values_t_bxn
def flatten(list_of_lists):
"""Takes a list of lists and returns a list of the elements.
Args:
list_of_lists: List of lists.
Returns:
flat_list: Flattened list.
flat_list_idxs: Flattened list indices.
"""
flat_list = []
flat_list_idxs = []
start_idx = 0
for item in list_of_lists:
if isinstance(item, list):
flat_list += item
l = len(item)
idxs = range(start_idx, start_idx+l)
start_idx = start_idx+l
else: # a value
flat_list.append(item)
idxs = [start_idx]
start_idx += 1
flat_list_idxs.append(idxs)
return flat_list, flat_list_idxs