Spaces:
Running
Running
File size: 4,748 Bytes
c7e95b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import torch
import sys
import argparse
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
from sam_segment import predict_masks_with_sam
from lama_inpaint import inpaint_img_with_lama
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points, get_clicked_point
def setup_args(parser):
parser.add_argument(
"--input_img", type=str, required=True,
help="Path to a single input img",
)
parser.add_argument(
"--coords_type", type=str, required=True,
default="key_in", choices=["click", "key_in"],
help="The way to select coords",
)
parser.add_argument(
"--point_coords", type=float, nargs='+', required=True,
help="The coordinate of the point prompt, [coord_W coord_H].",
)
parser.add_argument(
"--point_labels", type=int, nargs='+', required=True,
help="The labels of the point prompt, 1 or 0.",
)
parser.add_argument(
"--dilate_kernel_size", type=int, default=None,
help="Dilate kernel size. Default: None",
)
parser.add_argument(
"--output_dir", type=str, required=True,
help="Output path to the directory with results.",
)
parser.add_argument(
"--sam_model_type", type=str,
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b', 'vit_t'],
help="The type of sam model to load. Default: 'vit_h"
)
parser.add_argument(
"--sam_ckpt", type=str, required=True,
help="The path to the SAM checkpoint to use for mask generation.",
)
parser.add_argument(
"--lama_config", type=str,
default="./lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt", type=str, required=True,
help="The path to the lama checkpoint.",
)
if __name__ == "__main__":
"""Example usage:
python remove_anything.py \
--input_img FA_demo/FA1_dog.png \
--coords_type key_in \
--point_coords 750 500 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt sam_vit_h_4b8939.pth \
--lama_config lama/configs/prediction/default.yaml \
--lama_ckpt big-lama
"""
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.coords_type == "click":
latest_coords = get_clicked_point(args.input_img)
elif args.coords_type == "key_in":
latest_coords = args.point_coords
img = load_img_to_array(args.input_img)
masks, _, _ = predict_masks_with_sam(
img,
[latest_coords],
args.point_labels,
model_type=args.sam_model_type,
ckpt_p=args.sam_ckpt,
device=device,
)
masks = masks.astype(np.uint8) * 255
# dilate mask to avoid unmasked edge effect
if args.dilate_kernel_size is not None:
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
# visualize the segmentation results
img_stem = Path(args.input_img).stem
out_dir = Path(args.output_dir) / img_stem
out_dir.mkdir(parents=True, exist_ok=True)
for idx, mask in enumerate(masks):
# path to the results
mask_p = out_dir / f"mask_{idx}.png"
img_points_p = out_dir / f"with_points.png"
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
# save the mask
save_array_to_img(mask, mask_p)
# save the pointed and masked image
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [latest_coords], args.point_labels,
size=(width*0.04)**2)
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
show_mask(plt.gca(), mask, random_color=False)
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
plt.close()
# inpaint the masked image
for idx, mask in enumerate(masks):
mask_p = out_dir / f"mask_{idx}.png"
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
img_inpainted = inpaint_img_with_lama(
img, mask, args.lama_config, args.lama_ckpt, device=device)
save_array_to_img(img_inpainted, img_inpainted_p)
|