File size: 4,354 Bytes
c7e95b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import sys
import argparse
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
from typing import Any, Dict, List
import torch

from segment_anything import SamPredictor, sam_model_registry
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
    show_mask, show_points


def predict_masks_with_sam(

        img: np.ndarray,

        point_coords: List[List[float]],

        point_labels: List[int],

        model_type: str,

        ckpt_p: str,

        device="cuda"

):
    point_coords = np.array(point_coords)
    point_labels = np.array(point_labels)
    sam = sam_model_registry[model_type](checkpoint=ckpt_p)
    sam.to(device=device)
    predictor = SamPredictor(sam)

    predictor.set_image(img)
    masks, scores, logits = predictor.predict(
        point_coords=point_coords,
        point_labels=point_labels,
        multimask_output=True,
    )
    return masks, scores, logits


def build_sam_model(model_type: str, ckpt_p: str, device="cuda"):
    sam = sam_model_registry[model_type](checkpoint=ckpt_p)
    sam.to(device=device)
    predictor = SamPredictor(sam)
    return predictor



def setup_args(parser):
    parser.add_argument(
        "--input_img", type=str, required=True,
        help="Path to a single input img",
    )
    parser.add_argument(
        "--point_coords", type=float, nargs='+', required=True,
        help="The coordinate of the point prompt, [coord_W coord_H].",
    )
    parser.add_argument(
        "--point_labels", type=int, nargs='+', required=True,
        help="The labels of the point prompt, 1 or 0.",
    )
    parser.add_argument(
        "--dilate_kernel_size", type=int, default=None,
        help="Dilate kernel size. Default: None",
    )
    parser.add_argument(
        "--output_dir", type=str, required=True,
        help="Output path to the directory with results.",
    )
    parser.add_argument(
        "--sam_model_type", type=str,
        default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
        help="The type of sam model to load. Default: 'vit_h"
    )
    parser.add_argument(
        "--sam_ckpt", type=str, required=True,
        help="The path to the SAM checkpoint to use for mask generation.",
    )


if __name__ == "__main__":
    """Example usage:

    python sam_segment.py \

        --input_img FA_demo/FA1_dog.png \

        --point_coords 750 500 \

        --point_labels 1 \

        --dilate_kernel_size 15 \

        --output_dir ./results \

        --sam_model_type "vit_h" \

        --sam_ckpt sam_vit_h_4b8939.pth

    """
    parser = argparse.ArgumentParser()
    setup_args(parser)
    args = parser.parse_args(sys.argv[1:])
    device = "cuda" if torch.cuda.is_available() else "cpu"

    img = load_img_to_array(args.input_img)

    masks, _, _ = predict_masks_with_sam(
        img,
        [args.point_coords],
        args.point_labels,
        model_type=args.sam_model_type,
        ckpt_p=args.sam_ckpt,
        device=device,
    )
    masks = masks.astype(np.uint8) * 255

    # dilate mask to avoid unmasked edge effect
    if args.dilate_kernel_size is not None:
        masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]

    # visualize the segmentation results
    img_stem = Path(args.input_img).stem
    out_dir = Path(args.output_dir) / img_stem
    out_dir.mkdir(parents=True, exist_ok=True)
    for idx, mask in enumerate(masks):
        # path to the results
        mask_p = out_dir / f"mask_{idx}.png"
        img_points_p = out_dir / f"with_points.png"
        img_mask_p = out_dir / f"with_{Path(mask_p).name}"

        # save the mask
        save_array_to_img(mask, mask_p)

        # save the pointed and masked image
        dpi = plt.rcParams['figure.dpi']
        height, width = img.shape[:2]
        plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
        plt.imshow(img)
        plt.axis('off')
        show_points(plt.gca(), [args.point_coords], args.point_labels,
                    size=(width*0.04)**2)
        plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
        show_mask(plt.gca(), mask, random_color=False)
        plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
        plt.close()