File size: 14,610 Bytes
c7e95b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import os
import sys

sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
# os.chdir("../")
import cv2
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile

from stable_diffusion_inpaint import fill_img_with_sd, replace_img_with_sd
from lama_inpaint import (
    inpaint_img_with_lama,
    build_lama_model,
    inpaint_img_with_builded_lama,
)
from utils import (
    load_img_to_array,
    save_array_to_img,
    dilate_mask,
    show_mask,
    show_points,
)
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
import argparse


def setup_args(parser):
    parser.add_argument(
        "--lama_config",
        type=str,
        default="./lama/configs/prediction/default.yaml",
        help="The path to the config file of lama model. "
        "Default: the config of big-lama",
    )
    parser.add_argument(
        "--lama_ckpt",
        type=str,
        default="pretrained_models/big-lama",
        help="The path to the lama checkpoint.",
    )
    parser.add_argument(
        "--sam_ckpt",
        type=str,
        default="./pretrained_models/sam_vit_h_4b8939.pth",
        help="The path to the SAM checkpoint to use for mask generation.",
    )


def mkstemp(suffix, dir=None):
    fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
    os.close(fd)
    return Path(path)


def get_sam_feat(img):
    model["sam"].set_image(img)
    features = model["sam"].features
    orig_h = model["sam"].orig_h
    orig_w = model["sam"].orig_w
    input_h = model["sam"].input_h
    input_w = model["sam"].input_w
    model["sam"].reset_image()
    return features, orig_h, orig_w, input_h, input_w


def get_fill_img_with_sd(image, mask, image_resolution, text_prompt):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if len(mask.shape) == 3:
        mask = mask[:, :, 0]
    np_image = np.array(image, dtype=np.uint8)
    H, W, C = np_image.shape
    np_image = HWC3(np_image)
    np_image = resize_image(np_image, image_resolution)
    mask = cv2.resize(
        mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
    )

    img_fill = fill_img_with_sd(np_image, mask, text_prompt, device=device)
    img_fill = img_fill.astype(np.uint8)
    return img_fill


def get_replace_img_with_sd(image, mask, image_resolution, text_prompt):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if len(mask.shape) == 3:
        mask = mask[:, :, 0]
    np_image = np.array(image, dtype=np.uint8)
    H, W, C = np_image.shape
    np_image = HWC3(np_image)
    np_image = resize_image(np_image, image_resolution)
    mask = cv2.resize(
        mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
    )

    img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device)
    img_replaced = img_replaced.astype(np.uint8)
    return img_replaced


def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y


def resize_image(input_image, resolution):
    H, W, C = input_image.shape
    k = float(resolution) / min(H, W)
    H = int(np.round(H * k / 64.0)) * 64
    W = int(np.round(W * k / 64.0)) * 64
    img = cv2.resize(
        input_image,
        (W, H),
        interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
    )
    return img


def resize_points(clicked_points, original_shape, resolution):
    original_height, original_width, _ = original_shape
    original_height = float(original_height)
    original_width = float(original_width)

    scale_factor = float(resolution) / min(original_height, original_width)
    resized_points = []

    for point in clicked_points:
        x, y, lab = point
        resized_x = int(round(x * scale_factor))
        resized_y = int(round(y * scale_factor))
        resized_point = (resized_x, resized_y, lab)
        resized_points.append(resized_point)

    return resized_points


def get_click_mask(

    clicked_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size

):
    # model['sam'].set_image(image)
    model["sam"].is_image_set = True
    model["sam"].features = features
    model["sam"].orig_h = orig_h
    model["sam"].orig_w = orig_w
    model["sam"].input_h = input_h
    model["sam"].input_w = input_w

    # Separate the points and labels
    points, labels = zip(*[(point[:2], point[2]) for point in clicked_points])

    # Convert the points and labels to numpy arrays
    input_point = np.array(points)
    input_label = np.array(labels)

    masks, _, _ = model["sam"].predict(
        point_coords=input_point,
        point_labels=input_label,
        multimask_output=False,
    )
    if dilate_kernel_size is not None:
        masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
    else:
        masks = [mask for mask in masks]

    return masks


def process_image_click(

    original_image,

    point_prompt,

    clicked_points,

    image_resolution,

    features,

    orig_h,

    orig_w,

    input_h,

    input_w,

    dilate_kernel_size,

    evt: gr.SelectData,

):
    if clicked_points is None:
        clicked_points = []

    # print("Received click event:", evt)
    if original_image is None:
        # print("No image loaded.")
        return None, clicked_points, None

    clicked_coords = evt.index
    if clicked_coords is None:
        # print("No valid coordinates received.")
        return None, clicked_points, None

    x, y = clicked_coords
    label = point_prompt
    lab = 1 if label == "Foreground Point" else 0
    clicked_points.append((x, y, lab))
    # print("Updated points list:", clicked_points)

    input_image = np.array(original_image, dtype=np.uint8)
    H, W, C = input_image.shape
    input_image = HWC3(input_image)
    img = resize_image(input_image, image_resolution)
    # print("Processed image size:", img.shape)

    resized_points = resize_points(clicked_points, input_image.shape, image_resolution)
    mask_click_np = get_click_mask(
        resized_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
    )
    mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
    mask_image = HWC3(mask_click_np.astype(np.uint8))
    mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
    # print("Mask image prepared.")

    edited_image = input_image
    for x, y, lab in clicked_points:
        color = (255, 0, 0) if lab == 1 else (0, 0, 255)
        edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)

    opacity_mask = 0.75
    opacity_edited = 1.0
    overlay_image = cv2.addWeighted(
        edited_image,
        opacity_edited,
        (mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
        opacity_mask,
        0,
    )

    no_mask_overlay = edited_image.copy()

    return no_mask_overlay, overlay_image, clicked_points, mask_image


def image_upload(image, image_resolution):
    if image is None:
        return None, None, None, None, None, None
    else:
        np_image = np.array(image, dtype=np.uint8)
        H, W, C = np_image.shape
        np_image = HWC3(np_image)
        np_image = resize_image(np_image, image_resolution)
        features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image)
        return image, features, orig_h, orig_w, input_h, input_w


def get_inpainted_img(image, mask, image_resolution):
    lama_config = args.lama_config
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if len(mask.shape) == 3:
        mask = mask[:, :, 0]
    img_inpainted = inpaint_img_with_builded_lama(
        model["lama"], image, mask, lama_config, device=device
    )
    return img_inpainted


# get args
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
# build models
model = {}
# build the sam model
model_type = "vit_h"
ckpt_p = args.sam_ckpt
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
model["sam"] = SamPredictor(model_sam)

# build the lama model
lama_config = args.lama_config
lama_ckpt = args.lama_ckpt
device = "cuda" if torch.cuda.is_available() else "cpu"
model["lama"] = build_lama_model(lama_config, lama_ckpt, device=device)

button_size = (100, 50)
with gr.Blocks() as demo:
    clicked_points = gr.State([])
    # origin_image = gr.State(None)
    click_mask = gr.State(None)
    features = gr.State(None)
    orig_h = gr.State(None)
    orig_w = gr.State(None)
    input_h = gr.State(None)
    input_w = gr.State(None)

    with gr.Row():
        with gr.Column(variant="panel"):
            with gr.Row():
                gr.Markdown("## Upload an image and click the region you want to edit.")
            with gr.Row():
                source_image_click = gr.Image(
                    type="numpy",
                    interactive=True,
                    label="Upload and Edit Image",
                )

                image_edit_complete = gr.Image(
                    type="numpy",
                    interactive=False,
                    label="Editing Complete",
                )
            with gr.Row():
                point_prompt = gr.Radio(
                    choices=["Foreground Point", "Background Point"],
                    value="Foreground Point",
                    label="Point Label",
                    interactive=True,
                    show_label=False,
                )
                image_resolution = gr.Slider(
                    label="Image Resolution",
                    minimum=256,
                    maximum=768,
                    value=512,
                    step=64,
                )
                dilate_kernel_size = gr.Slider(
                    label="Dilate Kernel Size", minimum=0, maximum=30, value=15, step=1
                )
        with gr.Column(variant="panel"):
            with gr.Row():
                gr.Markdown("## Control Panel")
            text_prompt = gr.Textbox(label="Text Prompt")
            lama = gr.Button("Inpaint Image", variant="primary")
            fill_sd = gr.Button("Fill Anything with SD", variant="primary")
            replace_sd = gr.Button("Replace Anything with SD", variant="primary")
            clear_button_image = gr.Button(value="Reset", variant="secondary")

    # todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                gr.Markdown("## Mask")
            with gr.Row():
                click_mask = gr.Image(
                    type="numpy",
                    label="Click Mask",
                    interactive=False,
                )
        with gr.Column():
            with gr.Row():
                gr.Markdown("## Image Removed with Mask")
            with gr.Row():
                img_rm_with_mask = gr.Image(
                    type="numpy",
                    label="Image Removed with Mask",
                    interactive=False,
                )

        with gr.Column():
            with gr.Row():
                gr.Markdown("## Fill Anything with Mask")
            with gr.Row():
                img_fill_with_mask = gr.Image(
                    type="numpy",
                    label="Image Fill Anything with Mask",
                    interactive=False,
                )

        with gr.Column():
            with gr.Row():
                gr.Markdown("## Replace Anything with Mask")
            with gr.Row():
                img_replace_with_mask = gr.Image(
                    type="numpy",
                    label="Image Replace Anything with Mask",
                    interactive=False,
                )

    source_image_click.upload(
        image_upload,
        inputs=[source_image_click, image_resolution],
        outputs=[source_image_click, features, orig_h, orig_w, input_h, input_w],
    )

    source_image_click.select(
        process_image_click,
        inputs=[
            source_image_click,
            point_prompt,
            clicked_points,
            image_resolution,
            features,
            orig_h,
            orig_w,
            input_h,
            input_w,
            dilate_kernel_size,
        ],
        outputs=[source_image_click, image_edit_complete, clicked_points, click_mask],
        show_progress=True,
        queue=True,
    )

    lama.click(
        get_inpainted_img,
        inputs=[source_image_click, click_mask, image_resolution],
        outputs=[img_rm_with_mask],
    )

    fill_sd.click(
        get_fill_img_with_sd,
        inputs=[source_image_click, click_mask, image_resolution, text_prompt],
        outputs=[img_fill_with_mask],
    )

    replace_sd.click(
        get_replace_img_with_sd,
        inputs=[source_image_click, click_mask, image_resolution, text_prompt],
        outputs=[img_replace_with_mask],
    )

    def reset(*args):
        return [None for _ in args]

    clear_button_image.click(
        reset,
        inputs=[
            source_image_click,
            image_edit_complete,
            clicked_points,
            click_mask,
            features,
            img_rm_with_mask,
            img_fill_with_mask,
            img_replace_with_mask,
        ],
        outputs=[
            source_image_click,
            image_edit_complete,
            clicked_points,
            click_mask,
            features,
            img_rm_with_mask,
            img_fill_with_mask,
            img_replace_with_mask,
        ],
    )

if __name__ == "__main__":
    demo.launch(debug=False, show_error=True)