Spaces:
Sleeping
Sleeping
# 🦙 LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions | |
by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, | |
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky. | |
<p align="center" "font-size:30px;"> | |
🔥🔥🔥 | |
<br> | |
<b> | |
LaMa generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.</b> | |
</p> | |
[[Project page](https://advimman.github.io/lama-project/)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)] [[Casual GAN Papers Summary](https://www.casualganpapers.com/large-masks-fourier-convolutions-inpainting/LaMa-explained.html)] | |
<p align="center"> | |
<a href="https://colab.research.google.com/drive/15KTEIScUbVZtUP6w2tCDMVpE-b1r9pkZ?usp=drive_link"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg"/> | |
</a> | |
<br> | |
Try out in Google Colab | |
</p> | |
<p align="center"> | |
<img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/projects/lama_21/ezgif-4-0db51df695a8.gif" /> | |
</p> | |
<p align="center"> | |
<img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/projects/lama_21/gif_for_lightning_v1_white.gif" /> | |
</p> | |
# LaMa development | |
(Feel free to share your paper by creating an issue) | |
- https://github.com/geekyutao/Inpaint-Anything --- Inpaint Anything: Segment Anything Meets Image Inpainting | |
<p align="center"> | |
<img src="https://raw.githubusercontent.com/geekyutao/Inpaint-Anything/main/example/MainFramework.png" /> | |
</p> | |
- [Feature Refinement to Improve High Resolution Image Inpainting](https://arxiv.org/abs/2206.13644) / [video](https://www.youtube.com/watch?v=gEukhOheWgE) / code https://github.com/advimman/lama/pull/112 / by Geomagical Labs ([geomagical.com](geomagical.com)) | |
<p align="center"> | |
<img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/FeatureRefinement.png" /> | |
</p> | |
# Non-official 3rd party apps: | |
(Feel free to share your app/implementation/demo by creating an issue) | |
- https://github.com/enesmsahin/simple-lama-inpainting - a simple pip package for LaMa inpainting. | |
- https://github.com/mallman/CoreMLaMa - Apple's Core ML model format | |
- [https://cleanup.pictures](https://cleanup.pictures/) - a simple interactive object removal tool by [@cyrildiagne](https://twitter.com/cyrildiagne) | |
- [lama-cleaner](https://github.com/Sanster/lama-cleaner) by [@Sanster](https://github.com/Sanster/lama-cleaner) is a self-host version of [https://cleanup.pictures](https://cleanup.pictures/) | |
- Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/lama) by [@AK391](https://github.com/AK391) | |
- Telegram bot [@MagicEraserBot](https://t.me/MagicEraserBot) by [@Moldoteck](https://github.com/Moldoteck), [code](https://github.com/Moldoteck/MagicEraser) | |
- [Auto-LaMa](https://github.com/andy971022/auto-lama) = DE:TR object detection + LaMa inpainting by [@andy971022](https://github.com/andy971022) | |
- [LAMA-Magic-Eraser-Local](https://github.com/zhaoyun0071/LAMA-Magic-Eraser-Local) = a standalone inpainting application built with PyQt5 by [@zhaoyun0071](https://github.com/zhaoyun0071) | |
- [Hama](https://www.hama.app/) - object removal with a smart brush which simplifies mask drawing. | |
- [ModelScope](https://www.modelscope.cn/models/damo/cv_fft_inpainting_lama/summary) = the largest Model Community in Chinese by [@chenbinghui1](https://github.com/chenbinghui1). | |
- [LaMa with MaskDINO](https://github.com/qwopqwop200/lama-with-maskdino) = MaskDINO object detection + LaMa inpainting with refinement by [@qwopqwop200](https://github.com/qwopqwop200). | |
- [CoreMLaMa](https://github.com/mallman/CoreMLaMa) - a script to convert Lama Cleaner's port of LaMa to Apple's Core ML model format. | |
# Environment setup | |
Clone the repo: | |
`git clone https://github.com/advimman/lama.git` | |
There are three options of an environment: | |
1. Python virtualenv: | |
``` | |
virtualenv inpenv --python=/usr/bin/python3 | |
source inpenv/bin/activate | |
pip install torch==1.8.0 torchvision==0.9.0 | |
cd lama | |
pip install -r requirements.txt | |
``` | |
2. Conda | |
``` | |
% Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html | |
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh | |
bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda | |
$HOME/miniconda/bin/conda init bash | |
cd lama | |
conda env create -f conda_env.yml | |
conda activate lama | |
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y | |
pip install pytorch-lightning==1.2.9 | |
``` | |
3. Docker: No actions are needed 🎉. | |
# Inference <a name="prediction"></a> | |
Run | |
``` | |
cd lama | |
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) | |
``` | |
**1. Download pre-trained models** | |
The best model (Places2, Places Challenge): | |
``` | |
curl -LJO https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip | |
unzip big-lama.zip | |
``` | |
All models (Places & CelebA-HQ): | |
``` | |
download [https://drive.google.com/drive/folders/1B2x7eQDgecTL0oh3LSIBDGj0fTxs6Ips?usp=drive_link] | |
unzip lama-models.zip | |
``` | |
**2. Prepare images and masks** | |
Download test images: | |
``` | |
unzip LaMa_test_images.zip | |
``` | |
<details> | |
<summary>OR prepare your data:</summary> | |
1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder. | |
- You can use the [script](https://github.com/advimman/lama/blob/main/bin/gen_mask_dataset.py) for random masks generation. | |
- Check the format of the files: | |
``` | |
image1_mask001.png | |
image1.png | |
image2_mask001.png | |
image2.png | |
``` | |
2) Specify `image_suffix`, e.g. `.png` or `.jpg` or `_input.jpg` in `configs/prediction/default.yaml`. | |
</details> | |
**3. Predict** | |
On the host machine: | |
python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output | |
**OR** in the docker | |
The following command will pull the docker image from Docker Hub and execute the prediction script | |
``` | |
bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu | |
``` | |
Docker cuda: | |
``` | |
bash docker/2_predict_with_gpu.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output | |
``` | |
**4. Predict with Refinement** | |
On the host machine: | |
python3 bin/predict.py refine=True model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output | |
# Train and Eval | |
Make sure you run: | |
``` | |
cd lama | |
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) | |
``` | |
Then download models for _perceptual loss_: | |
mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/ | |
wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth | |
## Places | |
⚠️ NB: FID/SSIM/LPIPS metric values for Places that we see in LaMa paper are computed on 30000 images that we produce in evaluation section below. | |
For more details on evaluation data check [[Section 3. Dataset splits in Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf#subsection.3.1)] ⚠️ | |
On the host machine: | |
# Download data from http://places2.csail.mit.edu/download.html | |
# Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section | |
wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar | |
wget http://data.csail.mit.edu/places/places365/val_large.tar | |
wget http://data.csail.mit.edu/places/places365/test_large.tar | |
# Unpack train/test/val data and create .yaml config for it | |
bash fetch_data/places_standard_train_prepare.sh | |
bash fetch_data/places_standard_test_val_prepare.sh | |
# Sample images for test and viz at the end of epoch | |
bash fetch_data/places_standard_test_val_sample.sh | |
bash fetch_data/places_standard_test_val_gen_masks.sh | |
# Run training | |
python3 bin/train.py -cn lama-fourier location=places_standard | |
# To evaluate trained model and report metrics as in our paper | |
# we need to sample previously unseen 30k images and generate masks for them | |
bash fetch_data/places_standard_evaluation_prepare_data.sh | |
# Infer model on thick/thin/medium masks in 256 and 512 and run evaluation | |
# like this: | |
python3 bin/predict.py \ | |
model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \ | |
indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \ | |
outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt | |
python3 bin/evaluate_predicts.py \ | |
$(pwd)/configs/eval2_gpu.yaml \ | |
$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \ | |
$(pwd)/inference/random_thick_512 \ | |
$(pwd)/inference/random_thick_512_metrics.csv | |
Docker: TODO | |
## CelebA | |
On the host machine: | |
# Make shure you are in lama folder | |
cd lama | |
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) | |
# Download CelebA-HQ dataset | |
# Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P | |
# unzip & split into train/test/visualization & create config for it | |
bash fetch_data/celebahq_dataset_prepare.sh | |
# generate masks for test and visual_test at the end of epoch | |
bash fetch_data/celebahq_gen_masks.sh | |
# Run training | |
python3 bin/train.py -cn lama-fourier-celeba data.batch_size=10 | |
# Infer model on thick/thin/medium masks in 256 and run evaluation | |
# like this: | |
python3 bin/predict.py \ | |
model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier-celeba_/ \ | |
indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \ | |
outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt | |
Docker: TODO | |
## Places Challenge | |
On the host machine: | |
# This script downloads multiple .tar files in parallel and unpacks them | |
# Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama) | |
bash places_challenge_train_download.sh | |
TODO: prepare | |
TODO: train | |
TODO: eval | |
Docker: TODO | |
## Create your data | |
Please check bash scripts for data preparation and mask generation from CelebaHQ section, | |
if you stuck at one of the following steps. | |
On the host machine: | |
# Make shure you are in lama folder | |
cd lama | |
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) | |
# You need to prepare following image folders: | |
$ ls my_dataset | |
train | |
val_source # 2000 or more images | |
visual_test_source # 100 or more images | |
eval_source # 2000 or more images | |
# LaMa generates random masks for the train data on the flight, | |
# but needs fixed masks for test and visual_test for consistency of evaluation. | |
# Suppose, we want to evaluate and pick best models | |
# on 512x512 val dataset with thick/thin/medium masks | |
# And your images have .jpg extention: | |
python3 bin/gen_mask_dataset.py \ | |
$(pwd)/configs/data_gen/random_<size>_512.yaml \ # thick, thin, medium | |
my_dataset/val_source/ \ | |
my_dataset/val/random_<size>_512.yaml \# thick, thin, medium | |
--ext jpg | |
# So the mask generator will: | |
# 1. resize and crop val images and save them as .png | |
# 2. generate masks | |
ls my_dataset/val/random_medium_512/ | |
image1_crop000_mask000.png | |
image1_crop000.png | |
image2_crop000_mask000.png | |
image2_crop000.png | |
... | |
# Generate thick, thin, medium masks for visual_test folder: | |
python3 bin/gen_mask_dataset.py \ | |
$(pwd)/configs/data_gen/random_<size>_512.yaml \ #thick, thin, medium | |
my_dataset/visual_test_source/ \ | |
my_dataset/visual_test/random_<size>_512/ \ #thick, thin, medium | |
--ext jpg | |
ls my_dataset/visual_test/random_thick_512/ | |
image1_crop000_mask000.png | |
image1_crop000.png | |
image2_crop000_mask000.png | |
image2_crop000.png | |
... | |
# Same process for eval_source image folder: | |
python3 bin/gen_mask_dataset.py \ | |
$(pwd)/configs/data_gen/random_<size>_512.yaml \ #thick, thin, medium | |
my_dataset/eval_source/ \ | |
my_dataset/eval/random_<size>_512/ \ #thick, thin, medium | |
--ext jpg | |
# Generate location config file which locate these folders: | |
touch my_dataset.yaml | |
echo "data_root_dir: $(pwd)/my_dataset/" >> my_dataset.yaml | |
echo "out_root_dir: $(pwd)/experiments/" >> my_dataset.yaml | |
echo "tb_dir: $(pwd)/tb_logs/" >> my_dataset.yaml | |
mv my_dataset.yaml ${PWD}/configs/training/location/ | |
# Check data config for consistency with my_dataset folder structure: | |
$ cat ${PWD}/configs/training/data/abl-04-256-mh-dist | |
... | |
train: | |
indir: ${location.data_root_dir}/train | |
... | |
val: | |
indir: ${location.data_root_dir}/val | |
img_suffix: .png | |
visual_test: | |
indir: ${location.data_root_dir}/visual_test | |
img_suffix: .png | |
# Run training | |
python3 bin/train.py -cn lama-fourier location=my_dataset data.batch_size=10 | |
# Evaluation: LaMa training procedure picks best few models according to | |
# scores on my_dataset/val/ | |
# To evaluate one of your best models (i.e. at epoch=32) | |
# on previously unseen my_dataset/eval do the following | |
# for thin, thick and medium: | |
# infer: | |
python3 bin/predict.py \ | |
model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \ | |
indir=$(pwd)/my_dataset/eval/random_<size>_512/ \ | |
outdir=$(pwd)/inference/my_dataset/random_<size>_512 \ | |
model.checkpoint=epoch32.ckpt | |
# metrics calculation: | |
python3 bin/evaluate_predicts.py \ | |
$(pwd)/configs/eval2_gpu.yaml \ | |
$(pwd)/my_dataset/eval/random_<size>_512/ \ | |
$(pwd)/inference/my_dataset/random_<size>_512 \ | |
$(pwd)/inference/my_dataset/random_<size>_512_metrics.csv | |
**OR** in the docker: | |
TODO: train | |
TODO: eval | |
# Hints | |
### Generate different kinds of masks | |
The following command will execute a script that generates random masks. | |
bash docker/1_generate_masks_from_raw_images.sh \ | |
configs/data_gen/random_medium_512.yaml \ | |
/directory_with_input_images \ | |
/directory_where_to_store_images_and_masks \ | |
--ext png | |
The test data generation command stores images in the format, | |
which is suitable for [prediction](#prediction). | |
The table below describes which configs we used to generate different test sets from the paper. | |
Note that we *do not fix a random seed*, so the results will be slightly different each time. | |
| | Places 512x512 | CelebA 256x256 | | |
|--------|------------------------|------------------------| | |
| Narrow | random_thin_512.yaml | random_thin_256.yaml | | |
| Medium | random_medium_512.yaml | random_medium_256.yaml | | |
| Wide | random_thick_512.yaml | random_thick_256.yaml | | |
Feel free to change the config path (argument #1) to any other config in `configs/data_gen` | |
or adjust config files themselves. | |
### Override parameters in configs | |
Also you can override parameters in config like this: | |
python3 bin/train.py -cn <config> data.batch_size=10 run_title=my-title | |
Where .yaml file extension is omitted | |
### Models options | |
Config names for models from paper (substitude into the training command): | |
* big-lama | |
* big-lama-regular | |
* lama-fourier | |
* lama-regular | |
* lama_small_train_masks | |
Which are seated in configs/training/folder | |
### Links | |
- All the data (models, test images, etc.) https://disk.yandex.ru/d/AmdeG-bIjmvSug | |
- Test images from the paper https://disk.yandex.ru/d/xKQJZeVRk5vLlQ | |
- The pre-trained models https://disk.yandex.ru/d/EgqaSnLohjuzAg | |
- The models for perceptual loss https://disk.yandex.ru/d/ncVmQlmT_kTemQ | |
- Our training logs are available at https://disk.yandex.ru/d/9Bt1wNSDS4jDkQ | |
### Training time & resources | |
TODO | |
## Acknowledgments | |
* Segmentation code and models if form [CSAILVision](https://github.com/CSAILVision/semantic-segmentation-pytorch). | |
* LPIPS metric is from [richzhang](https://github.com/richzhang/PerceptualSimilarity) | |
* SSIM is from [Po-Hsun-Su](https://github.com/Po-Hsun-Su/pytorch-ssim) | |
* FID is from [mseitzer](https://github.com/mseitzer/pytorch-fid) | |
## Citation | |
If you found this code helpful, please consider citing: | |
``` | |
@article{suvorov2021resolution, | |
title={Resolution-robust Large Mask Inpainting with Fourier Convolutions}, | |
author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor}, | |
journal={arXiv preprint arXiv:2109.07161}, | |
year={2021} | |
} | |
``` | |