Spaces:
Sleeping
Sleeping
import sys | |
import argparse | |
import numpy as np | |
from pathlib import Path | |
from matplotlib import pyplot as plt | |
from typing import Any, Dict, List | |
import torch | |
from segment_anything import SamPredictor, sam_model_registry | |
from utils import load_img_to_array, save_array_to_img, dilate_mask, \ | |
show_mask, show_points | |
def predict_masks_with_sam( | |
img: np.ndarray, | |
point_coords: List[List[float]], | |
point_labels: List[int], | |
model_type: str, | |
ckpt_p: str, | |
device="cuda" | |
): | |
point_coords = np.array(point_coords) | |
point_labels = np.array(point_labels) | |
sam = sam_model_registry[model_type](checkpoint=ckpt_p) | |
sam.to(device=device) | |
predictor = SamPredictor(sam) | |
predictor.set_image(img) | |
masks, scores, logits = predictor.predict( | |
point_coords=point_coords, | |
point_labels=point_labels, | |
multimask_output=True, | |
) | |
return masks, scores, logits | |
def build_sam_model(model_type: str, ckpt_p: str, device="cuda"): | |
sam = sam_model_registry[model_type](checkpoint=ckpt_p) | |
sam.to(device=device) | |
predictor = SamPredictor(sam) | |
return predictor | |
def setup_args(parser): | |
parser.add_argument( | |
"--input_img", type=str, required=True, | |
help="Path to a single input img", | |
) | |
parser.add_argument( | |
"--point_coords", type=float, nargs='+', required=True, | |
help="The coordinate of the point prompt, [coord_W coord_H].", | |
) | |
parser.add_argument( | |
"--point_labels", type=int, nargs='+', required=True, | |
help="The labels of the point prompt, 1 or 0.", | |
) | |
parser.add_argument( | |
"--dilate_kernel_size", type=int, default=None, | |
help="Dilate kernel size. Default: None", | |
) | |
parser.add_argument( | |
"--output_dir", type=str, required=True, | |
help="Output path to the directory with results.", | |
) | |
parser.add_argument( | |
"--sam_model_type", type=str, | |
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'], | |
help="The type of sam model to load. Default: 'vit_h" | |
) | |
parser.add_argument( | |
"--sam_ckpt", type=str, required=True, | |
help="The path to the SAM checkpoint to use for mask generation.", | |
) | |
if __name__ == "__main__": | |
"""Example usage: | |
python sam_segment.py \ | |
--input_img FA_demo/FA1_dog.png \ | |
--point_coords 750 500 \ | |
--point_labels 1 \ | |
--dilate_kernel_size 15 \ | |
--output_dir ./results \ | |
--sam_model_type "vit_h" \ | |
--sam_ckpt sam_vit_h_4b8939.pth | |
""" | |
parser = argparse.ArgumentParser() | |
setup_args(parser) | |
args = parser.parse_args(sys.argv[1:]) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
img = load_img_to_array(args.input_img) | |
masks, _, _ = predict_masks_with_sam( | |
img, | |
[args.point_coords], | |
args.point_labels, | |
model_type=args.sam_model_type, | |
ckpt_p=args.sam_ckpt, | |
device=device, | |
) | |
masks = masks.astype(np.uint8) * 255 | |
# dilate mask to avoid unmasked edge effect | |
if args.dilate_kernel_size is not None: | |
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks] | |
# visualize the segmentation results | |
img_stem = Path(args.input_img).stem | |
out_dir = Path(args.output_dir) / img_stem | |
out_dir.mkdir(parents=True, exist_ok=True) | |
for idx, mask in enumerate(masks): | |
# path to the results | |
mask_p = out_dir / f"mask_{idx}.png" | |
img_points_p = out_dir / f"with_points.png" | |
img_mask_p = out_dir / f"with_{Path(mask_p).name}" | |
# save the mask | |
save_array_to_img(mask, mask_p) | |
# save the pointed and masked image | |
dpi = plt.rcParams['figure.dpi'] | |
height, width = img.shape[:2] | |
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77)) | |
plt.imshow(img) | |
plt.axis('off') | |
show_points(plt.gca(), [args.point_coords], args.point_labels, | |
size=(width*0.04)**2) | |
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0) | |
show_mask(plt.gca(), mask, random_color=False) | |
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0) | |
plt.close() |