File size: 4,118 Bytes
5252609
827c867
5252609
925b9c1
2330a16
b3925d0
dae60c0
 
5252609
5abbc9d
 
ea450aa
 
 
 
 
 
 
925b9c1
b3925d0
5252609
b3925d0
 
5abbc9d
5252609
 
ea450aa
dae60c0
 
 
 
5252609
359047c
ea450aa
dae60c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359047c
 
 
dae60c0
 
 
988a34b
827c867
 
 
 
 
 
dae60c0
828375c
988a34b
 
5252609
 
827c867
 
 
dae60c0
 
2ecb2cf
827c867
b3925d0
827c867
b3925d0
827c867
b3925d0
827c867
b3925d0
827c867
b3925d0
dae60c0
828375c
 
5252609
 
dae60c0
54f830c
5252609
988a34b
5252609
 
 
e8e6d43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
from diffusers import StableDiffusion3Pipeline
import gradio as gr
import os
import transformers
import numpy as np
from transformers import T5Tokenizer, T5ForConditionalGeneration
import spaces

HF_TOKEN = os.getenv("HF_TOKEN")

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")


MAX_SEED = np.iinfo(np.int32).max


# Initialize the pipeline and download the sd3 medium model
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.to(device)

# superprompt-v1
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto")
model.to(device)

# Define the image generation function
@spaces.GPU(duration=60 * 2)
def generate_image(prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt):
    if seed == 0:
        seed = random.randint(1, 2**32-1)
        
    if enhance_prompt:
        transformers.set_seed(seed)
        
        input_text = f"Expand the following prompt to add more detail: {prompt}"
        input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
        
        outputs = model.generate(
        input_ids,
        max_new_tokens=512,
        repetition_penalty=1.2,
        do_sample=True,
        temperature=0.7,
        top_p=1,
        top_k=50
        )
        prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
    generator = torch.Generator().manual_seed(seed)
    
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        generator=generator,
        num_images_per_prompt=num_images_per_prompt
    ).images
    return output

# Create the Gradio interface

prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...")

enhance_prompt = gr.Checkbox(label="Prompt Enhancement", info="Enhance your prompt with SuperPrompt-v1", value=True)

negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...")

num_inference_steps = gr.Number(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", precision=0, value=25)

height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024)

width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024)

guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1)

seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")

num_images_per_prompt = gr.Slider(label="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1)

interface = gr.Interface(
    fn=generate_image,
    inputs=[prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt],
    outputs=gr.Gallery(label="Generated AI Images", elem_id="gallery", show_label=False),
    title="Stable Diffusion 3 Medium",
    description="Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a> \n Join https://discord.gg/osai to talk about Open Source AI"
)

# Launch the interface
interface.launch(share = False)