Spaces:
Running
Running
import streamlit as st | |
import torch | |
import librosa | |
from datasets import load_dataset | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
# (You may need to install Streamlit if you haven't already: pip install streamlit) | |
LANG_ID = "en" | |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" | |
st.title("Speech Recognition App") # Give your app a title | |
# Load the model and processor (do this outside the main function for efficiency) | |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) | |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
def speech_file_to_array_fn(audio_file): | |
speech_array, sampling_rate = librosa.load(audio_file, sr=16_000) | |
return speech_array | |
def process_audio(speech_array): | |
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
predicted_sentence = processor.batch_decode(predicted_ids)[0] | |
return predicted_sentence | |
def main(): | |
uploaded_file = st.file_uploader("Choose an audio file (.wav format)", type='wav') | |
if uploaded_file is not None: | |
speech_array = speech_file_to_array_fn(uploaded_file) | |
predicted_sentence = process_audio(speech_array) | |
st.header("Prediction:") | |
st.write(predicted_sentence) | |
if __name__ == "__main__": | |
main() | |