Spaces:
Sleeping
Sleeping
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" | |
!pip install --no-deps xformers trl peft accelerate bitsandbytes | |
from unsloth import FastLanguageModel | |
import torch | |
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
# 4bit pre quantized models we support for 4x faster downloading + no OOMs. | |
fourbit_models = [ | |
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster! | |
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit", | |
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster! | |
"unsloth/llama-3-8b-Instruct-bnb-4bit", | |
"unsloth/llama-3-70b-bnb-4bit", | |
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster! | |
"unsloth/Phi-3-medium-4k-instruct", | |
"unsloth/mistral-7b-bnb-4bit", | |
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster! | |
] # More models at https://huggingface.co/unsloth | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "unsloth/llama-3-8b-bnb-4bit", | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit, | |
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf | |
) | |
from google.colab import drive | |
drive.mount('/content/drive') | |
import pandas as pd | |
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/qa_examples.csv') | |
df.head(5) | |
df.columns = df.columns.str.strip() | |
df.columns | |
# Format into new columns | |
df['instruction'] = df.apply(lambda row: f"The following question is solved for {row['marks_available']} marks: {row['question']}. Referring to the mark-scheme, award the appropriate amount of marks to the student: {row['mark_scheme']}", axis=1) | |
df['input'] = df['student_response'] | |
df['output'] = df.apply(lambda row: str({'marks': row['marks_award'], 'explanation': row['explanation']}), axis=1) | |
# Create a new DataFrame with the desired structure | |
formatted_df = pd.DataFrame({ | |
'instruction': df['instruction'], | |
'input': df['input'], | |
'output': df['output'] | |
}) | |
# Display the formatted DataFrame | |
formatted_df.head(5) | |
"""* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc | |
* We support 16bit LoRA or 4bit QLoRA. Both 2x faster. | |
* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method. | |
* With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models. | |
* [**NEW**] We make Phi-3 Medium / Mini **2x faster**! See our [Phi-3 Medium notebook](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing) | |
We now add LoRA adapters so we only need to update 1 to 10% of all parameters! | |
""" | |
model = FastLanguageModel.get_peft_model( | |
model, | |
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | |
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", | |
"gate_proj", "up_proj", "down_proj",], | |
lora_alpha = 16, | |
lora_dropout = 0, # Supports any, but = 0 is optimized | |
bias = "none", # Supports any, but = "none" is optimized | |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! | |
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context | |
random_state = 3407, | |
use_rslora = False, # We support rank stabilized LoRA | |
loftq_config = None, # And LoftQ | |
) | |
"""<a name="Data"></a> | |
### Data Prep | |
We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep. | |
**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only). | |
**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations! | |
If you want to use the `llama-3` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing). | |
For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing). | |
<a name="Train"></a> | |
### Train the model | |
Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`! | |
""" | |
alpaca_prompt = """ | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN | |
def formatting_prompts_func(examples): | |
instructions = examples["instruction"] | |
inputs = examples["input"] | |
outputs = examples["output"] | |
texts = [] | |
for instruction, input, output in zip(instructions, inputs, outputs): | |
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN | |
texts.append(text) | |
return { "text" : texts, } | |
pass | |
from datasets import Dataset | |
dataset = Dataset.from_pandas(formatted_df, split = 'train') | |
dataset = dataset.map(formatting_prompts_func, batched = True,) | |
print(dataset) | |
from trl import SFTTrainer | |
from transformers import TrainingArguments | |
from unsloth import is_bfloat16_supported | |
trainer = SFTTrainer( | |
model = model, | |
tokenizer = tokenizer, | |
train_dataset = dataset, | |
dataset_text_field = "text", | |
max_seq_length = max_seq_length, | |
dataset_num_proc = 3, | |
packing = False, # Can make training 5x faster for short sequences. | |
args = TrainingArguments( | |
per_device_train_batch_size = 2, | |
gradient_accumulation_steps = 4, | |
warmup_steps = 5, | |
max_steps = 60, | |
learning_rate = 2e-4, | |
fp16 = not is_bfloat16_supported(), | |
bf16 = is_bfloat16_supported(), | |
logging_steps = 1, | |
optim = "adamw_8bit", | |
weight_decay = 0.01, | |
lr_scheduler_type = "linear", | |
seed = 3407, | |
output_dir = "outputs", | |
), | |
) | |
#@title Show current memory stats | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
trainer_stats = trainer.train() | |
#@title Show final memory and time stats | |
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
used_memory_for_lora = round(used_memory - start_gpu_memory, 3) | |
used_percentage = round(used_memory /max_memory*100, 3) | |
lora_percentage = round(used_memory_for_lora/max_memory*100, 3) | |
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") | |
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.") | |
print(f"Peak reserved memory = {used_memory} GB.") | |
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") | |
print(f"Peak reserved memory % of max memory = {used_percentage} %.") | |
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.") | |
"""<a name="Inference"></a> | |
### Inference | |
Let's run the model! You can change the instruction and input - leave the output blank! | |
You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time! | |
""" | |
from transformers import TextStreamer | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
import json | |
import re | |
def extract_json(text): | |
# Regular expression pattern to match JSON objects | |
json_pattern = re.compile(r'\{.*?\}', re.DOTALL) | |
potential_jsons = json_pattern.findall(text) | |
extracted_jsons = [] | |
for potential_json in potential_jsons: | |
try: | |
extracted_jsons.append(json.loads(potential_json)) | |
except json.JSONDecodeError: | |
continue | |
return extracted_jsons[0:1] | |
# alpaca_prompt = You MUST copy from above! | |
inputs = tokenizer( | |
[ | |
alpaca_prompt.format( | |
"Find the derivative of f(x) = 3x^2 + 4cos(x) - 1 for a maximum of 2 marks.'. Referring to the mark-scheme, award the appropriate amount of marks to the student: 'Correctly apply differentiation rules.", # instruction | |
"6x^2 - 4sin(x)", # input | |
"", # output - leave this blank for generation! | |
) | |
], return_tensors = "pt").to("cuda") | |
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) | |
tokenizer.batch_decode(outputs) | |