Spaces:
Running
Running
import io | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import soundfile | |
from inference.infer_tool import Svc | |
import os | |
def list_files_tree(directory, indent=""): | |
items = os.listdir(directory) | |
for i, item in enumerate(items): | |
prefix = "βββ " if i == len(items) - 1 else "βββ " | |
print(indent + prefix + item) | |
item_path = os.path.join(directory, item) | |
if os.path.isdir(item_path): | |
next_indent = indent + (" " if i == len(items) - 1 else "β ") | |
list_files_tree(item_path, next_indent) | |
from huggingface_hub import snapshot_download | |
print("Models...") | |
models_id = """None1145/So-VITS-SVC-Vulpisfoglia | |
None1145/So-VITS-SVC-Lappland | |
None1145/So-VITS-SVC-Lappland-the-Decadenza | |
None1145/So-VITS-SVC-Rosmontis""" | |
for model_id in models_id.split("\n"): | |
if model_id in ["", " "]: | |
break | |
print(f"{model_id}...") | |
snapshot_download(repo_id=model_id, local_dir=f"./Models/{model_id}") | |
print(f"{model_id}!!!") | |
print("Models!!!") | |
print("PretrainedModels...") | |
base_model_id = "None1145/So-VITS-SVC-Base" | |
snapshot_download(repo_id=base_model_id, local_dir=f"./PretrainedModels/{base_model_id}") | |
print("PretrainedModels!!!") | |
list_files_tree("./") | |
import re | |
models_info = {} | |
models_folder_path = "./Models/None1145" | |
folder_names = [name for name in os.listdir(models_folder_path) if os.path.isdir(os.path.join(models_folder_path, name))] | |
for folder_name in folder_names: | |
speaker = folder_name[12:] | |
pattern = re.compile(r"G_(\d+)\.pth$") | |
max_value = -1 | |
max_file = None | |
models_path = f"{models_folder_path}/{folder_name}/Models" | |
config_path = f"{models_folder_path}/{folder_name}/Configs" | |
for filename in os.listdir(models_path): | |
match = pattern.search(filename) | |
if match: | |
value = int(match.group(1)) | |
if value > max_value: | |
max_value = value | |
max_file = filename | |
models_info[speaker] = {} | |
models_info[speaker]["model"] = f"{models_path}/{max_file}" | |
models_info[speaker]["config"] = f"{config_path}/config.json" | |
if os.path.exists(f"{models_path}/feature_and_index.pkl"): | |
models_info[speaker]["cluster"] = f"{models_path}/feature_and_index.pkl" | |
models_info[speaker]["feature_retrieval"] = True | |
elif os.path.exists(f"{models_path}/kmeans_10000.pt"): | |
models_info[speaker]["cluster"] = f"{models_path}/kmeans_10000.pt" | |
models_info[speaker]["feature_retrieval"] = False | |
else: | |
models_info[speaker]["cluster"] = "logs/44k/kmeans_10000.pt" | |
models_info[speaker]["feature_retrieval"] = False | |
speakers = list(models_info.keys()) | |
print(models_info) | |
print(speakers) | |
def load(speaker): | |
return Svc(models_info[speaker]["model"], models_info[speaker]["config"], cluster_model_path=models_info[speaker]["cluster"], feature_retrieval=models_info[speaker]["feature_retrieval"]) | |
def vc_fn(speaker, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale): | |
model = load(speaker) | |
if input_audio is None: | |
return "You need to upload an audio", None | |
sampling_rate, audio = input_audio | |
duration = audio.shape[0] / sampling_rate | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
print(audio.shape) | |
out_wav_path = "temp.wav" | |
soundfile.write(out_wav_path, audio, 16000, format="wav") | |
print( cluster_ratio, auto_f0, noise_scale) | |
_audio = model.slice_inference(out_wav_path, speaker, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale) | |
return "Success", (44100, _audio) | |
app = gr.Blocks() | |
with app: | |
with gr.Tabs(): | |
for speaker in speakers: | |
with gr.TabItem(speaker): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<a><strong>{speaker}</strong></a>' | |
'</div>') | |
speaker = gr.Textbox(label="Speaker", value=speaker) | |
vc_input3 = gr.Audio(label="Upload Audio") | |
vc_transform = gr.Number(label="Pitch Shift (integer, can be positive or negative, number of semitones, raising an octave is +12)", value=0) | |
cluster_ratio = gr.Number(label="Cluster Model Mixing Ratio (0-1): Defaults to 0 (clustering disabled). Improves timbre similarity but may reduce articulation clarity. Recommended value: ~0.5 if used", value=0) | |
auto_f0 = gr.Checkbox(label="Auto f0 Prediction: Works better with the cluster model for f0 prediction but disables the pitch shift feature. (For voice conversion only; do not enable this for singing voices, as it will result in extreme off-pitch issues)", value=False) | |
slice_db = gr.Number(label="Slicing Threshold", value=-40) | |
noise_scale = gr.Number(label="noise_scale", value=0.4) | |
vc_submit = gr.Button("Convert", variant="primary") | |
vc_output1 = gr.Textbox(label="Output Message") | |
vc_output2 = gr.Audio(label="Output Audio") | |
vc_submit.click(vc_fn, [speaker, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2]) | |
app.launch() | |