Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchaudio.transforms import Resample | |
from vdecoder.nsf_hifigan.models import load_model | |
from vdecoder.nsf_hifigan.nvSTFT import STFT | |
class Enhancer: | |
def __init__(self, enhancer_type, enhancer_ckpt, device=None): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
if enhancer_type == 'nsf-hifigan': | |
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device) | |
else: | |
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}") | |
self.resample_kernel = {} | |
self.enhancer_sample_rate = self.enhancer.sample_rate() | |
self.enhancer_hop_size = self.enhancer.hop_size() | |
def enhance(self, | |
audio, # 1, T | |
sample_rate, | |
f0, # 1, n_frames, 1 | |
hop_size, | |
adaptive_key = 0, | |
silence_front = 0 | |
): | |
# enhancer start time | |
start_frame = int(silence_front * sample_rate / hop_size) | |
real_silence_front = start_frame * hop_size / sample_rate | |
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ] | |
f0 = f0[: , start_frame :, :] | |
# adaptive parameters | |
adaptive_factor = 2 ** ( -adaptive_key / 12) | |
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100)) | |
real_factor = self.enhancer_sample_rate / adaptive_sample_rate | |
# resample the ddsp output | |
if sample_rate == adaptive_sample_rate: | |
audio_res = audio | |
else: | |
key_str = str(sample_rate) + str(adaptive_sample_rate) | |
if key_str not in self.resample_kernel: | |
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device) | |
audio_res = self.resample_kernel[key_str](audio) | |
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1) | |
# resample f0 | |
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy() | |
f0_np *= real_factor | |
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor | |
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames) | |
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1]) | |
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames | |
# enhance | |
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res) | |
# resample the enhanced output | |
if adaptive_factor != 0: | |
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate) | |
if key_str not in self.resample_kernel: | |
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device) | |
enhanced_audio = self.resample_kernel[key_str](enhanced_audio) | |
# pad the silence frames | |
if start_frame > 0: | |
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0)) | |
return enhanced_audio, enhancer_sample_rate | |
class NsfHifiGAN(torch.nn.Module): | |
def __init__(self, model_path, device=None): | |
super().__init__() | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
print('| Load HifiGAN: ', model_path) | |
self.model, self.h = load_model(model_path, device=self.device) | |
def sample_rate(self): | |
return self.h.sampling_rate | |
def hop_size(self): | |
return self.h.hop_size | |
def forward(self, audio, f0): | |
stft = STFT( | |
self.h.sampling_rate, | |
self.h.num_mels, | |
self.h.n_fft, | |
self.h.win_size, | |
self.h.hop_size, | |
self.h.fmin, | |
self.h.fmax) | |
with torch.no_grad(): | |
mel = stft.get_mel(audio) | |
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1) | |
return enhanced_audio, self.h.sampling_rate |