Spaces:
Running
Running
from dataclasses import dataclass | |
from typing import Dict, Iterable, Optional | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from .decoding import decode as decode_function | |
from .decoding import detect_language as detect_language_function | |
class ModelDimensions: | |
n_mels: int | |
n_audio_ctx: int | |
n_audio_state: int | |
n_audio_head: int | |
n_audio_layer: int | |
n_vocab: int | |
n_text_ctx: int | |
n_text_state: int | |
n_text_head: int | |
n_text_layer: int | |
class LayerNorm(nn.LayerNorm): | |
def forward(self, x: Tensor) -> Tensor: | |
return super().forward(x.float()).type(x.dtype) | |
class Linear(nn.Linear): | |
def forward(self, x: Tensor) -> Tensor: | |
return F.linear( | |
x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype) | |
) | |
class Conv1d(nn.Conv1d): | |
def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: | |
return super()._conv_forward( | |
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) | |
) | |
def sinusoids(length, channels, max_timescale=10000): | |
"""Returns sinusoids for positional embedding""" | |
assert channels % 2 == 0 | |
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) | |
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) | |
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] | |
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, n_state: int, n_head: int): | |
super().__init__() | |
self.n_head = n_head | |
self.query = Linear(n_state, n_state) | |
self.key = Linear(n_state, n_state, bias=False) | |
self.value = Linear(n_state, n_state) | |
self.out = Linear(n_state, n_state) | |
def forward( | |
self, | |
x: Tensor, | |
xa: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
kv_cache: Optional[dict] = None, | |
): | |
q = self.query(x) | |
if kv_cache is None or xa is None or self.key not in kv_cache: | |
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; | |
# otherwise, perform key/value projections for self- or cross-attention as usual. | |
k = self.key(x if xa is None else xa) | |
v = self.value(x if xa is None else xa) | |
else: | |
# for cross-attention, calculate keys and values once and reuse in subsequent calls. | |
k = kv_cache[self.key] | |
v = kv_cache[self.value] | |
wv, qk = self.qkv_attention(q, k, v, mask) | |
return self.out(wv), qk | |
def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None): | |
n_batch, n_ctx, n_state = q.shape | |
scale = (n_state // self.n_head) ** -0.25 | |
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale | |
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale | |
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) | |
qk = q @ k | |
if mask is not None: | |
qk = qk + mask[:n_ctx, :n_ctx] | |
qk = qk.float() | |
w = F.softmax(qk, dim=-1).to(q.dtype) | |
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): | |
super().__init__() | |
self.attn = MultiHeadAttention(n_state, n_head) | |
self.attn_ln = LayerNorm(n_state) | |
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None | |
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None | |
n_mlp = n_state * 4 | |
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)) | |
self.mlp_ln = LayerNorm(n_state) | |
def forward( | |
self, | |
x: Tensor, | |
xa: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
kv_cache: Optional[dict] = None, | |
): | |
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0] | |
if self.cross_attn: | |
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0] | |
x = x + self.mlp(self.mlp_ln(x)) | |
return x | |
class AudioEncoder(nn.Module): | |
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): | |
super().__init__() | |
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) | |
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) | |
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) | |
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( | |
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] | |
) | |
self.ln_post = LayerNorm(n_state) | |
def forward(self, x: Tensor): | |
""" | |
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) | |
the mel spectrogram of the audio | |
""" | |
x = F.gelu(self.conv1(x)) | |
x = F.gelu(self.conv2(x)) | |
x = x.permute(0, 2, 1) | |
len_x = x.shape[1] | |
len_e = self.positional_embedding.shape[0] | |
assert len_x <= len_e, "incorrect audio shape" | |
pos_e = self.positional_embedding[:len_x, :] | |
x = (x + pos_e).to(x.dtype) | |
for block in self.blocks: | |
x = block(x) | |
x = self.ln_post(x) | |
return x | |
class TextDecoder(nn.Module): | |
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): | |
super().__init__() | |
self.token_embedding = nn.Embedding(n_vocab, n_state) | |
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) | |
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( | |
[ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)] | |
) | |
self.ln = LayerNorm(n_state) | |
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) | |
self.register_buffer("mask", mask, persistent=False) | |
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): | |
""" | |
x : torch.LongTensor, shape = (batch_size, <= n_ctx) | |
the text tokens | |
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx) | |
the encoded audio features to be attended on | |
""" | |
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 | |
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] | |
x = x.to(xa.dtype) | |
for block in self.blocks: | |
x = block(x, xa, mask=self.mask, kv_cache=kv_cache) | |
x = self.ln(x) | |
logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float() | |
return logits | |
class Whisper(nn.Module): | |
def __init__(self, dims: ModelDimensions): | |
super().__init__() | |
self.dims = dims | |
self.encoder = AudioEncoder( | |
self.dims.n_mels, | |
self.dims.n_audio_ctx, | |
self.dims.n_audio_state, | |
self.dims.n_audio_head, | |
self.dims.n_audio_layer, | |
) | |
self.decoder = TextDecoder( | |
self.dims.n_vocab, | |
self.dims.n_text_ctx, | |
self.dims.n_text_state, | |
self.dims.n_text_head, | |
self.dims.n_text_layer, | |
) | |
def embed_audio(self, mel: torch.Tensor): | |
return self.encoder(mel) | |
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor): | |
return self.decoder(tokens, audio_features) | |
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]: | |
return self.decoder(tokens, self.encoder(mel)) | |
def device(self): | |
return next(self.parameters()).device | |
def is_multilingual(self): | |
return self.dims.n_vocab == 51865 | |
def install_kv_cache_hooks(self, cache: Optional[dict] = None): | |
""" | |
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value | |
tensors calculated for the previous positions. This method returns a dictionary that stores | |
all caches, and the necessary hooks for the key and value projection modules that save the | |
intermediate tensors to be reused during later calculations. | |
Returns | |
------- | |
cache : Dict[nn.Module, torch.Tensor] | |
A dictionary object mapping the key/value projection modules to its cache | |
hooks : List[RemovableHandle] | |
List of PyTorch RemovableHandle objects to stop the hooks to be called | |
""" | |
cache = {**cache} if cache is not None else {} | |
hooks = [] | |
def save_to_cache(module, _, output): | |
if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]: | |
cache[module] = output # save as-is, for the first token or cross attention | |
else: | |
cache[module] = torch.cat([cache[module], output], dim=1).detach() | |
return cache[module] | |
def install_hooks(layer: nn.Module): | |
if isinstance(layer, MultiHeadAttention): | |
hooks.append(layer.key.register_forward_hook(save_to_cache)) | |
hooks.append(layer.value.register_forward_hook(save_to_cache)) | |
self.decoder.apply(install_hooks) | |
return cache, hooks | |
detect_language = detect_language_function | |
decode = decode_function | |