File size: 6,414 Bytes
2cd4061
 
 
 
 
 
4237af4
5517553
 
 
 
 
 
 
 
4237af4
 
2cd4061
 
 
 
 
4237af4
 
 
2cd4061
 
 
4237af4
2cd4061
c88233e
4237af4
b01cc46
4237af4
2cd4061
4237af4
 
2cd4061
 
4237af4
2cd4061
c88233e
4237af4
 
2cd4061
 
 
 
 
 
 
4237af4
25554bb
b6f82d7
25554bb
2cd4061
4237af4
 
 
2cd4061
 
fd2037f
4237af4
fd2037f
2cd4061
fd2037f
4237af4
 
2cd4061
4237af4
2cd4061
4237af4
fd2037f
 
b01cc46
fd2037f
 
4237af4
fd2037f
2cd4061
fd2037f
 
 
 
b01cc46
4237af4
b01cc46
4237af4
 
2cd4061
fd2037f
 
4237af4
fd2037f
 
 
 
 
 
 
4237af4
fd2037f
 
 
4237af4
2cd4061
 
 
fd2037f
2cd4061
 
fd2037f
4237af4
fd2037f
 
 
4237af4
fd2037f
 
 
 
 
 
6dc1ca6
4237af4
2cd4061
4237af4
7e9d65c
b01cc46
d24e2bd
 
2cd4061
5517553
 
2cd4061
4237af4
5a2b76f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
from huggingface_hub import InferenceClient
import json
from bs4 import BeautifulSoup
import requests

# Custom CSS for Gradio app
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# Function to extract text from a webpage
def get_text_from_html(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup(["script", "style", "header", "footer"]):
        tag.extract()
    return soup.get_text(strip=True)

# Function to perform a web search
def perform_search(query):
    search_term = query
    all_results = []
    max_chars_per_page = 8000
    with requests.Session() as session:
        response = session.get(
            url="https://www.google.com/search",
            headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"},
            params={"q": search_term, "num": 3, "udm": 14},
            timeout=5,
            verify=False,
        )
        response.raise_for_status()
        soup = BeautifulSoup(response.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        for result in result_block:
            link = result.find("a", href=True)["href"]
            try:
                webpage_response = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"}, timeout=5, verify=False)
                webpage_response.raise_for_status()
                visible_text = get_text_from_html(webpage_response.text)
                if len(visible_text) > max_chars_per_page:
                    visible_text = visible_text[:max_chars_per_page]
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException:
                all_results.append({"link": link, "text": None})
    return all_results

# Initialize inference clients
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# Function to handle responses
def chat_response(message, history):
    func_calls = []

    user_prompt = message
    functions_metadata = [
        {"type": "function", "function": {"name": "web_search", "description": "Search query on Google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Web search query"}}, "required": ["query"]}}},
    ]

    for msg in history:
        func_calls.append({"role": "user", "content": f"{str(msg[0])}"})
        func_calls.append({"role": "assistant", "content": f"{str(msg[1])}"})

    func_calls.append({"role": "user", "content": f'[SYSTEM] You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message}'})
    
    response = client_gemma.chat_completion(func_calls, max_tokens=200)
    response = str(response)
    try:
        response = response[int(response.find("{")):int(response.rindex("}"))+1]
    except:
        response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
    response = response.replace("\\n", "").replace("\\'", "'").replace('\\"', '"').replace('\\', '')
    print(f"\n{response}")
    
    try:
        json_data = json.loads(str(response))
        if json_data["name"] == "web_search":
            query = json_data["arguments"]["query"]
            gr.Info("Searching Web")
            web_results = perform_search(query)
            gr.Info("Extracting relevant Info")
            web_summary = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
            messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
            for msg in history:
                messages += f"\nuser\n{str(msg[0])}"
                messages += f"\nassistant\n{str(msg[1])}"
            messages += f"\nuser\n{message}\nweb_result\n{web_summary}\nassistant\n"
            stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "":
                    output += response.token.text
                    yield output
        else:
            messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
            for msg in history:
                messages += f"\nuser\n{str(msg[0])}"
                messages += f"\nassistant\n{str(msg[1])}"
            messages += f"\nuser\n{message}\nassistant\n"
            stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "":
                    output += response.token.text
                    yield output
    except:
        messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
        for msg in history:
            messages += f"\nuser\n{str(msg[0])}"
            messages += f"\nassistant\n{str(msg[1])}"
        messages += f"\nuser\n{message}\nassistant\n"
        stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            if not response.token.text == "":
                output += response.token.text
                yield output

# Create Gradio interface
demo = gr.ChatInterface(
    fn=chat_response,
    chatbot=gr.Chatbot(),
    description=" ",
    textbox=gr.Textbox(), 
    multimodal=False,
    concurrency_limit=200,
    css=css,
    theme="allenai/gradio-theme",
)

demo.launch(share=True)