File size: 6,414 Bytes
2cd4061 4237af4 5517553 4237af4 2cd4061 4237af4 2cd4061 4237af4 2cd4061 c88233e 4237af4 b01cc46 4237af4 2cd4061 4237af4 2cd4061 4237af4 2cd4061 c88233e 4237af4 2cd4061 4237af4 25554bb b6f82d7 25554bb 2cd4061 4237af4 2cd4061 fd2037f 4237af4 fd2037f 2cd4061 fd2037f 4237af4 2cd4061 4237af4 2cd4061 4237af4 fd2037f b01cc46 fd2037f 4237af4 fd2037f 2cd4061 fd2037f b01cc46 4237af4 b01cc46 4237af4 2cd4061 fd2037f 4237af4 fd2037f 4237af4 fd2037f 4237af4 2cd4061 fd2037f 2cd4061 fd2037f 4237af4 fd2037f 4237af4 fd2037f 6dc1ca6 4237af4 2cd4061 4237af4 7e9d65c b01cc46 d24e2bd 2cd4061 5517553 2cd4061 4237af4 5a2b76f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
from huggingface_hub import InferenceClient
import json
from bs4 import BeautifulSoup
import requests
# Custom CSS for Gradio app
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Function to extract text from a webpage
def get_text_from_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
# Function to perform a web search
def perform_search(query):
search_term = query
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
response = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"},
params={"q": search_term, "num": 3, "udm": 14},
timeout=5,
verify=False,
)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)["href"]
try:
webpage_response = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"}, timeout=5, verify=False)
webpage_response.raise_for_status()
visible_text = get_text_from_html(webpage_response.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# Function to handle responses
def chat_response(message, history):
func_calls = []
user_prompt = message
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on Google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Web search query"}}, "required": ["query"]}}},
]
for msg in history:
func_calls.append({"role": "user", "content": f"{str(msg[0])}"})
func_calls.append({"role": "assistant", "content": f"{str(msg[1])}"})
func_calls.append({"role": "user", "content": f'[SYSTEM] You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message}'})
response = client_gemma.chat_completion(func_calls, max_tokens=200)
response = str(response)
try:
response = response[int(response.find("{")):int(response.rindex("}"))+1]
except:
response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
response = response.replace("\\n", "").replace("\\'", "'").replace('\\"', '"').replace('\\', '')
print(f"\n{response}")
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
gr.Info("Searching Web")
web_results = perform_search(query)
gr.Info("Extracting relevant Info")
web_summary = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
for msg in history:
messages += f"\nuser\n{str(msg[0])}"
messages += f"\nassistant\n{str(msg[1])}"
messages += f"\nuser\n{message}\nweb_result\n{web_summary}\nassistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "":
output += response.token.text
yield output
else:
messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
for msg in history:
messages += f"\nuser\n{str(msg[0])}"
messages += f"\nassistant\n{str(msg[1])}"
messages += f"\nuser\n{message}\nassistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "":
output += response.token.text
yield output
except:
messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
for msg in history:
messages += f"\nuser\n{str(msg[0])}"
messages += f"\nassistant\n{str(msg[1])}"
messages += f"\nuser\n{message}\nassistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "":
output += response.token.text
yield output
# Create Gradio interface
demo = gr.ChatInterface(
fn=chat_response,
chatbot=gr.Chatbot(),
description=" ",
textbox=gr.Textbox(),
multimodal=False,
concurrency_limit=200,
css=css,
theme="allenai/gradio-theme",
)
demo.launch(share=True) |